1. [Naïve Bayes and Learning Threshold Functions - 25 points]

(a) [5 points] \(f_{TH(4,9)} \) can be represented as a linear threshold function as follows:

\[
\sum_{i=1}^{9} x_i \geq 4
\]

(b) [10 points] \(f_{TH(4,9)} \) will predict negative iff there are 0, 1, 2, or 3 literals that are active. Thus,

\[
\Pr(f_{TH(4,9)} = 0) = \binom{9}{0} + \binom{9}{1} + \binom{9}{2} + \binom{9}{3}
\]

\[
= \frac{1 + 9 + 36 + 84}{512} = \frac{130}{512}
\]

Consequently, \(\Pr(f_{TH(4,9)} = 1) = 1 - \Pr(f_{TH(4,9)} = 0) = \frac{382}{512} \)

Since the distribution is uniform, we can write the following for all \(i \in \{1, \ldots, 9\} \):

\[
\Pr(x_i = 1 | f_{TH(4,9)} = 1) = \frac{\binom{8}{3} + \binom{8}{4} + \binom{8}{5} + \binom{8}{6} + \binom{8}{7} + \binom{8}{8}}{382} = \frac{56 + 70 + 56 + 28 + 8 + 1}{382} = \frac{219}{382}
\]

and \(\Pr(x_i = 1 | f_{TH(4,9)} = 0) = \frac{\binom{8}{0} + \binom{8}{1} + \binom{8}{2}}{130} = \frac{1 + 8 + 28}{130} = \frac{37}{130} \)

Let \(p_i = \Pr(x_i = 1 | f_{TH(4,9)} = 1) \) and \(q_i = P(x_i = 1 | f_{TH(4,9)} = 0) \). Then, the hypothesis produced by naïve Bayes can be written as

\[
\log \frac{\Pr(f_{TH(4,9)} = 1)}{\Pr(f_{TH(4,9)} = 0)} + \sum_{i=1}^{9} \log \frac{1 - p_i}{1 - q_i} + \sum_{i=1}^{9} \left(\log \frac{p_i}{1 - p_i} - \log \frac{q_i}{1 - q_i} \right) x_i \geq 0 \tag{2}
\]

By substituting the values we computed into (2), we get

\[
\log \frac{382}{130} + \sum_{i=1}^{9} \log \frac{163}{93/130} + \sum_{i=1}^{9} \left(\log \frac{219}{163} - \log \frac{37}{93} \right) x_i \geq 0
\]

\[
\therefore 0.468 + 9 \times (-0.22244) + \sum_{i=1}^{9} 0.5285x_i \geq 0
\]

\[
\therefore \sum_{i=1}^{9} 0.5285x_i \geq 1.5516
\]

\[
\therefore \text{The hypothesis generated by naïve Bayes is } \sum_{i=1}^{9} x_i \geq 2.9359 \tag{3}
\]
(c) [5 points] If we compare the two equations (1) and (3), we can easily prove that
the hypothesis produced by naïve Bayes cannot represent $f_{TH(4,9)}$ because (3) will
make a mistake if any three literals are active. Therefore, naïve Bayes cannot
learn $f_{TH(4,9)}$, although more general linear separators can.

(d) [5 points] No. The naïve Bayes assumption is conditional independence of its
literals given the label, which means

$$\Pr(x_i \land x_j \mid v) = \Pr(x_i \mid v) \Pr(x_j \mid v)$$ \hspace{1cm} (4)

To see why this doesn’t hold in this case, compare the following two results:

$$\Pr(x_1=1 \land x_2=1 \mid f_{TH(4,9)}=0) = \frac{\binom{7}{0} + \binom{7}{1}}{130} = \frac{8}{130}$$

$$\Pr(x_1=1 \mid f_{TH(4,9)}=0) \times \Pr(x_2=1 \mid f_{TH(4,9)}=0) = \left(\frac{\binom{8}{0} + \binom{8}{1} + \binom{8}{2}}{130}\right)^2$$

$$= \left(\frac{37}{130}\right)^2 \neq \frac{8}{130}$$

This means that the classifier derived using the naïve Bayes algorithm may not
be the optimal classifier.

Indeed, (1) is the optimal classifier. In this case (but not in general), the optimal
classifier is an exact classifier – one that never makes classification mistakes. As
shown in (c), naïve Bayes cannot represent this function and does make mistakes.

Notice that there is a difference between the optimal classifier and an exact clas-
sifier. There are cases in which the optimal classifier is not exact. Any classifier
you learn will make mistakes.

On the other hand, there could be cases in which the independence assumptions
are violated, but nevertheless, the classifier learned using naïve Bayes is very good
or even optimal.

2. [Multivariate Poisson naïve Bayes - 30 points] You have two non-negative
integer-valued numbers X_1 and X_2 as input-features and your class label Y can take
two values, A and B. Conditioned on Y, X_i for $i = 1, 2$ follows a Poisson distribution
with parameter λ_i specific to the class label of Y. That is

$$\Pr[X_i = x \mid Y = A] = \frac{e^{-\lambda_i^A}(\lambda_i^A)^x}{x!} \quad \text{and} \quad \Pr[X_i = x \mid Y = B] = \frac{e^{-\lambda_i^B}(\lambda_i^B)^x}{x!} \text{ for } i = 1, 2$$

The given data in Table 1 is generated by a Poisson naïve Bayes model.

(a) [10 points] Under the naïve Bayes assumption, conditioned on $Y = A$, X_1 is
generated independently of X_2; furthermore, the conditional distribution of X_1
given $Y = A$ follows a Poisson distribution with parameter λ_1^A (same goes for
$Y = B$ and X_2.) We shall invoke this assumption in order to compute the MLE
values of different λs. In particular, to compute λ_1^A, we need only look at the
value of X_1 for those examples where $Y = A$. This underlines the basic approach towards calculating the MLE parameters under the naïve Bayes assumption.

Before anything else, we shall show, given observations drawn from Poisson distributions, how to compute the maximum likelihood value of corresponding λ. Let’s say we observe values $z_1, z_2, ..., z_n$ from a Poisson distribution with parameter λ, then the log-likelihood of this data is

$$LL(\lambda) = \sum_{i=1}^{n} \log \Pr(z_i | \lambda) = \sum_{i=1}^{n} \log \frac{e^{-\lambda} (\lambda)^{z_i}}{z_i!} = \left(\sum_{i=1}^{n} z_i \right) \log \lambda - n\lambda - \left(\sum_{i=1}^{n} \log(z_i!) \right).$$

Setting the derivative of $LL(\lambda)$ to zero, yields the maximum likelihood estimate of λ as

$$\lambda = \frac{\sum_{i=1}^{n} z_i}{n}.$$ \hspace{1cm} (5)

Now, we use the (5), to estimate the MLE value of λ^A_1, λ^A_2, λ^B_1, and λ^B_2. Now, when $Y = A$, the value of X_i is 0, 4, and 2. So as per (5), the MLE value of λ^A_1 is $\frac{0+4+2}{3} = 2$. Similarly the MLE values of λ^A_2, λ^B_1, and λ^B_2 are 5, 4, and 3 respectively.

Also, Since the dataset contains 3 A and 4 B labels so the prior probabilities are $\Pr(Y = A) = \frac{3}{7}$ and $\Pr(Y = B) = \frac{4}{7}$. The parameter values are summarized in Table 2.

<table>
<thead>
<tr>
<th>X_1</th>
<th>X_2</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>A</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>B</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>B</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>B</td>
</tr>
</tbody>
</table>

Table 1: Dataset for Poisson naïve Bayes

<table>
<thead>
<tr>
<th>X_1</th>
<th>X_2</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>A</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>B</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>B</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>B</td>
</tr>
</tbody>
</table>

Table 2: Parameters for Poisson naïve Bayes

(b) [10 points] The required ratio for any $X_1 = x_1$ and $X_2 = x_2$ can be written as
For Plugging the values from Table 2, we get the prior probability of Y higher for $X_1 = x_1$ and $X_2 = x_2$ above, we get

\[
\frac{\Pr(X_1 = x_1, X_2 = x_2|Y = A)}{\Pr(X_1 = x_1, X_2 = x_2|Y = B)} = \frac{\Pr(X_1 = x_1|Y = A) \Pr(X_2 = x_2|Y = A)}{\Pr(X_1 = x_1|Y = B) \Pr(X_2 = x_2|Y = B)} \quad \text{(NB assumption)}
\]

\[
= \frac{e^{-\lambda_B^x \lambda_B^y/x_1} e^{-\lambda_B^x \lambda_B^y/x_2}}{e^{-\lambda_B^x \lambda_B^y/x_1} e^{-\lambda_B^x \lambda_B^y/x_2}} = e^{\lambda_B^A - \lambda_B^A - \lambda_B^A \left(\frac{\lambda_B^A}{\lambda_B^A} \right)^{x_1} \left(\frac{\lambda_B^A}{\lambda_B^A} \right)^{x_2}}
\]

Plugging in the values of λs from Table 2, and $x_1 = 2$ and $x_2 = 3$ above, we get

\[
\frac{\Pr(X_1 = 2, X_2 = 3|Y = A)}{\Pr(X_1 = 2, X_2 = 3|Y = B)} = e^{3+4-3-5} \left(\frac{2}{4} \right)^2 \left(\frac{5}{3} \right)^3 = \frac{125}{108}
\]

(c) [5 points] Given $X_1 = x_1$ and $X_2 = x_2$, we predict $Y = A$ if

\[
\frac{\Pr(Y = A|X_1 = x_1, X_2 = x_2)}{\Pr(Y = B|X_1 = x_1, X_2 = x_2)} \geq 1.
\]

Now, let us consider this ratio:

\[
\frac{\Pr(Y = A|X_1 = x_1, X_2 = x_2)}{\Pr(Y = B|X_1 = x_1, X_2 = x_2)} = \frac{\Pr(X_1 = x_1, X_2 = x_2|Y = A) \Pr(Y = A)}{\Pr(X_1 = x_1, X_2 = x_2|Y = B) \Pr(Y = B)}.
\]

Using (6), we can write the above as

\[
e^{\lambda_B^A + \lambda_B^A - \lambda_B^A \left(\frac{\lambda_B^A}{\lambda_B^A} \right)^{x_1} \left(\frac{\lambda_B^A}{\lambda_B^A} \right)^{x_2}} \frac{\Pr(Y = A)}{\Pr(Y = B)}.
\]

So we predict $Y = A$ if

\[
e^{\lambda_B^A + \lambda_B^A - \lambda_B^A \left(\frac{\lambda_B^A}{\lambda_B^A} \right)^{x_1} \left(\frac{\lambda_B^A}{\lambda_B^A} \right)^{x_2}} \frac{\Pr(Y = A)}{\Pr(Y = B)} \geq 1
\]

\[
\iff \lambda_B^A + \lambda_B^A - \lambda_B^A \log \frac{\Pr(Y = A)}{\Pr(Y = B)} + x_1 \log \frac{\lambda_B^A}{\lambda_B^A} + x_2 \log \frac{\lambda_B^A}{\lambda_B^A} \geq 0 \quad \text{(taking log)}
\]

(d) [5 points] Plugging the values from Table 2, we get

\[
Y = A \iff \log \frac{3}{4} + (\log \frac{5}{3})x_2 - (\log 2)x_1 \geq 0.
\]

For $x_1 = 2$ and $x_2 = 3$, $\log \frac{3}{4} + (\log \frac{5}{3})x_2 - (\log 2)x_1 = \log \frac{125}{108} < 0$. Thus we predict $Y = B$ for this example.

Notice that, even though the conditional probability of $X_1 = 2$ and $X_2 = 3$ is higher for $Y = A$ than $Y = B$ (in part (b)), the prediction gets reversed due to the prior probability of $Y = B$ being higher.
3. [Naïve Bayes over Multinomial Distribution - 35 points]

(a) [2 points] The aforementioned model loses the order of the words in a document and ignores the semantic meanings of the words.

(b) [5 points] Notice that you’re asked to generate the joint log-likelihood of the data and the label i.e. log \(Pr(D_i, y_i) \) and not just the data conditioned on the label. The joint probability \(Pr(D_i, y_i) \) can be written as \(Pr(D_i|y_i) Pr(y_i) \). Assume that the prior probability of generating \(Pr(Y_i = 1) \) is \(\eta \); naturally \(Pr(Y_i = 0) \) is \(1 - \eta \). Now using the fact that \(y_i \in \{0, 1\} \), we can conveniently write down the joint probability as

\[
Pr(D_i, y_i) = Pr(Y = y_i) Pr(D_i|Y = y_i) = (Pr(Y = 1)Pr(D_i|Y = 1))^y_i (Pr(Y = 0)Pr(D_i|Y = 0))^{1-y_i}
\]

Using the naïve Bayes model we’re given, we can write \(Pr(D_i, y_i) \) as

\[
Pr(D_i, y_i) = \left(\eta \frac{n!}{a_i!b_i!c_i!} \alpha_1^a \beta_1^b \gamma_1^c \right)^{y_i} \left((1 - \eta) \frac{n!}{a_i!b_i!c_i!} \alpha_0^a \beta_0^b \gamma_0^c \right)^{1-y_i}
\]

Finally, we can express the log-likelihood of the document \(D_i, L_i \), as

\[
L_i = \log Pr(D_i, y_i) = y_i \left[\log \eta + \log \left(\frac{n!}{a_i!b_i!c_i!} \right) + a_i \log \alpha_1 + b_i \log \beta_1 + c_i \log \gamma_1 \right] + (1 - y_i) \left[\log(1 - \eta) + \log \left(\frac{n!}{a_i!b_i!c_i!} \right) + a_i \log \alpha_0 + b_i \log \beta_0 + c_i \log \gamma_0 \right]
\]

(c) [28 points] We derive the parameter values by maximizing the joint likelihood \(L = \sum_i L_i \) derived in Equation 9. However, notice that the parameters \(\alpha_1, \beta_1, \) and \(\gamma_1 \) are not independent of each other (same goes for \(\alpha_0, \beta_0, \) and \(\gamma_0 \)) and so we cannot directly differentiate \(L \) to obtain MLE values. We shall have to substitute one of these values in terms of the others to obtain what we desire. Let’s substitute \(\gamma_1 = 1 - \alpha_1 - \beta_1 \). We will derive the values of \(\alpha_1 \) and \(\beta_1 \) and those will automatically give the value of \(\gamma_1 \) as per the above relation. First, we aim at deriving the expression for \(\alpha_1 \). We have that \(\frac{\partial \gamma_1}{\partial \alpha_1} = -1 \). Differentiating \(L \) as given in Eq. (7), we get

\[
\frac{\partial L}{\partial \alpha_1} = \sum_i y_i \left(\frac{a_i}{\alpha_1} + \frac{c_i}{\gamma_1} \frac{\partial \gamma_1}{\partial \alpha_1} \right) = \sum_i y_i \left(\frac{a_i}{\alpha_1} - \frac{c_i}{\gamma_1} \right) = \sum_i y_i \left(\frac{a_i \gamma_1 - c_i \alpha_1}{\alpha_1 \gamma_1} \right) = 0
\]

\[
\therefore \gamma_1 \sum_i y_i a_i = \alpha_1 \sum_i y_i c_i
\]

\[
\therefore \alpha_1 = \gamma_1 \frac{\sum_i y_i a_i}{\sum_i y_i c_i}
\]
Similarly, \(\beta_1 = \gamma_1 \sum_i y_i b_i \sum_i y_i c_i \)

But, \(\alpha_1 + \beta_1 + \gamma_1 = 1 \)

\[\therefore \gamma_1 \left[\sum_i y_i a_i + \sum_i y_i b_i + 1 \right] = 1 \]

\[\therefore \gamma_1 \left[\sum_i y_i (a_i + b_i + c_i) \right] = 1 \]

Since, \(a_i + b_i + c_i = n \), \(\gamma_1 = \frac{\sum_i y_i c_i}{n \sum_i y_i} \) (11)

Substituting in Eq. 10, \(\alpha_1 = \frac{\sum_i y_i a_i}{n \sum_i y_i} \) (12)

and \(\beta_1 = \frac{\sum_i y_i b_i}{n \sum_i y_i} \) (13)

Doing a similar derivation as above with \(\alpha_0, \beta_0, \) and \(\gamma_0 \), we can show that

\[\alpha_0 = \frac{\sum_i (1 - y_i) a_i}{n \sum_i (1 - y_i)} \] (14)

\[\beta_0 = \frac{\sum_i (1 - y_i) b_i}{n \sum_i (1 - y_i)} \] (15)

and \(\gamma_0 = \frac{\sum_i (1 - y_i) c_i}{n \sum_i (1 - y_i)} \) (16)

Note that this is not the only way to solve this. We can also work out the expressions using KKT conditions to add the constraint in \(L \). Let

\[L' = \sum_i y_i \left[\log \eta + \log \left(\frac{n!}{a_i! b_i! c_i!} \right) + a_i \log \alpha_1 + b_i \log \beta_1 + c_i \log \gamma_1 \right] \]

\[+ \sum_i (1 - y_i) \left[\log (1 - \eta) + \log \left(\frac{n!}{a_i! b_i! c_i!} \right) + a_i \log \alpha_0 + b_i \log \beta_0 + c_i \log \gamma_0 \right] \]

\[- \lambda_1 (\alpha_1 + \beta_1 + \gamma_1 - 1) - \lambda_0 (\alpha_0 + \beta_0 + \gamma_0 - 1) \]

\[\therefore \frac{\partial L'}{\partial \alpha_1} = \sum_i y_i \left(\frac{a_i}{\alpha_1} \right) - \lambda_1 = \sum_i y_i a_i \frac{1}{\alpha_1} - \lambda_1 = 0 \]

\[\therefore \alpha_1 = \frac{1}{\lambda} \sum_i y_i a_i \]

Similarly, \(\beta_1 = \frac{1}{\lambda} \sum_i y_i b_i \) and \(\gamma_1 = \frac{1}{\lambda} \sum_i y_i c_i \)

\[\alpha_1 + \beta_1 + \gamma_1 = 1 = \frac{1}{\lambda} \left(\sum_i y_i (a_i + b_i + c_i) \right) \]

\[\Rightarrow \lambda = n \sum_i y_i \]

Substituting \(\lambda \) gives the same expressions as Eq. (11) to (13).
4. [Dice Roll - 10 points]

According to the described scheme of generating a coin toss sequence, we see that the probability of 6 appearing in the observed sequence is \(p^2 \): the first toss comes out as an 6 (with probability \(p \)), and then the second toss also comes out as an 6. Hence, the probability of any number within the range 1-5 appearing in the observed sequence is \(1 - \Pr(6 \text{ appearing}) = 1 - p^2 \). For each one of the five, the probability is \((1 - p^2)/5 \).

Assuming Bernoulli distribution, if the final sequence \(S \) of length \(n \) contains \(k \) 6’s,

\[
\Pr(S) = (p^2)^k(1 - p^2)^{n-k}
\]

\[
L = \log \Pr(S) = 2k \log p + (n - k) \log(1 - p^2)
\]

\[
\frac{\partial L}{\partial p} = \frac{2k}{p} + \frac{(n - k)(-2p)}{1 - p^2} = \frac{2k - 2kp^2 - 2np^2 + 2kp^2}{p(1 - p^2)} = 0
\]

\[
\therefore 2k = 2np^2 \Rightarrow p^2 = \frac{k}{n}, \text{ or } p = \sqrt{\frac{k}{n}}.
\]

Note that if we use \(\Pr(S) = (p^2)^k(1 - p^2)^{n-k} \) instead, we have

\[
L = \log \Pr(S) = 2k \log p + (n - k) \log(1 - p^2) - (n - k) \log 5,
\]

where the last term is independent of \(p \) and does not affect our final solution. Both solutions are accepted. (What do these two different \(\Pr(S) \)'s represent, respectively?)

For the sequence 3463661622, \(k = 4 \) and \(n = 10 \). Hence, the maximum likelihood estimate of \(p = \sqrt{\frac{4}{10}} = 0.632 \).