CS 446: Machine Learning

Dan Roth
University of Illinois, Urbana-Champaign

danr@illinois.edu
http://L2R.cs.uiuc.edu/~danr
3322 SC
Cheating
No.
We take it very seriously.

Homework:
- Collaboration is encouraged
- But, you have to write your own solution/program.
- (Please don’t use old solutions)

Late Policy:
You have a credit of 4 days (4*24 hours); That’s it.

Grading:
- Possibly separate for grads/undergrads.
- 5% Class work; 25% - homework; 30% - midterm; 40% - final;
- Projects: 25% (4 hours)

Questions?

Note also the Schedule Page and our Notes on the main page
CS446 Team

- **Dan Roth** (3323 Siebel)
 - **Tuesday, 2:00 PM – 3:00 PM**

- **TAs** (4407 Siebel)
 - Kai-Wei Chang: Tuesday 5:00pm-6:00pm (3333 SC)
 - Chen-Tse Tsai: Tuesday 8:00pm-9:00pm (3333 SC)
 - Bryan Lunt: Tue 8:00pm-9:00pm (1121 SC)
 - Rongda Zhu: Thursday 4:00pm-5:00pm (2205 SC)

- **Discussion Sections**: (starting next week; no Monday)
 - **Mondays**: 5:00pm-6:00pm 3405-SC Bryan Lunt [A-F]
 - **Tuesday**: 5:00pm-6:00pm 3401-SC Chen-Tse Tsai [G-L]
 - **Wednesdays**: 5:30pm-6:30pm 3405-SC Kai-Wei Chang [M-S]
 - **Thursdays**: 5:00pm-6:00pm 3403-SC Rongda Zhu [T-Z]
CS446 on the web

Check our class website:
- Schedule, slides, videos, policies
 - http://l2r.cs.uiuc.edu/~danr/Teaching/CS446-14/index.html
- Sign up, participate in our Piazza forum:
 - Announcements and discussions
 - https://piazza.com/class#fall2014/cs446
- Log on to Compass:
 - Submit assignments, get your grades
 - https://compass2g.illinois.edu

Homework:
No need to submit Hw0;
Later: submit electronically.
What is Learning

- The Badges Game
 - This is an example of the key learning protocol: supervised learning

- First question: Are you sure you got it right?
 - Why?

- Issues:
 - Prediction or Modeling?
 - Representation
 - Problem setting
 - Background Knowledge
 - When did learning take place?
 - Algorithm
Supervised Learning

Input

$x \in \mathcal{X}$
An item x drawn from an input space \mathcal{X}

System

$y = f(x)$

Output

$y \in \mathcal{Y}$
An item y drawn from an output space \mathcal{Y}

- We consider systems that apply a function $f()$ to input items x and return an output $y = f(x)$.
In (supervised) machine learning, we deal with systems whose \(f(x) \) is learned from examples.
Why use learning?

- We typically use machine learning when the function $f(x)$ we want the system to apply is too complex to program by hand.
Supervised learning

Target function:
\[y = f(x) \]

Input:
- \(x \in X \)
 - An item drawn from an instance space \(X \)

Learned Model:
\[y = g(x) \]

Output:
- \(y \in Y \)
 - An item drawn from a label space \(Y \)
Supervised learning: Training

- Give the learner examples in D^{train}
- The learner returns a model $g(x)$

Can you suggest other learning protocols?
Supervised learning: Testing

Reserve some labeled data for testing

Labeled Test Data

\[D^{test} \]

\((x'_1, y'_1)\)

\((x'_2, y'_2)\)

...

\((x'_M, y'_M)\)
Supervised learning: Testing

Labeled Test Data \(\mathcal{D}^{test} \)

\((x'_1, y'_1) \)
\((x'_2, y'_2) \)
...
\((x'_M, y'_M) \)

Raw Test Data \(\mathbf{X}^{test} \)

\(x'_1 \)
\(x'_2 \)
...
\(x'_M \)

Test Labels \(\mathbf{Y}^{test} \)

\(y'_1 \)
\(y'_2 \)
...
\(y'_M \)
Supervised learning: Testing

- Apply the model to the raw test data
- Can you use the test data otherwise?

Can you suggest other evaluation protocols?

Raw Test Data X^{test}

X'_1

X'_2

....

X'_M

Learned model $g(x)$

Predicted Labels $g(X^{test})$

$g(X'_{1})$

$g(X'_{2})$

....

$g(X'_{M})$

Test Labels Y^{test}

Y'_{1}

Y'_{2}

....

Y'_{M}
Supervised learning: Testing

- Evaluate the model by comparing the predicted labels against the test labels

Raw Test Data χ_{test}
- x'_1
- x'_2
-
- x'_M

Predicted Labels $g(\chi_{test})$
- $g(x'_1)$
- $g(x'_2)$
-
- $g(x'_M)$

Test Labels y_{test}
- y'_1
- y'_2
-
- y'_M
The Badges game
What is Learning

- The Badges Game
 - This is an example of the key learning protocol: supervised learning
- First question: Are you sure you got it?
 - Why?
- Issues:
 - Prediction or Modeling?
 - Representation
 - Problem setting
 - Background Knowledge
 - When did learning take place?
 - Algorithm
The Badges game

+ Naoki Abe
- Eric Baum

Conference attendees to the 1994 Machine Learning conference were given name badges labeled with + or −.

What function was used to assign these labels?
Training data

+ Naoki Abe
- Myriam Abramson
+ David W. Aha
+ Kamal M. Ali
- Eric Allender
+ Dana Angluin
- Chidanand Apte
+ Minoru Asada
+ Lars Asker
+ Javed Aslam
+ Jose L. Balcazar
- Cristina Baroglio
+ Peter Bartlett
- Eric Baum
+ Welton Becket
- Shai Ben-David
+ George Berg
+ Neil Berkman
+ Malini Bhandaru
+ Bir Bhanu
+ Reinhard Blasig
- Avrim Blum
- Anselm Blumer
+ Justin Boyan
+ Carla E. Brodley
+ Nader Bshouty
- Wray Buntine
- Andrey Burago
+ Tom Bylander
+ Bill Byrne
- Claire Cardie
+ John Case
+ Jason Catlett
- Philip Chan
- Zhixiang Chen
- Chris Darken
Raw test data

Gerald F. DeJong
Chris Drummond
Yolanda Gil
Attilio Giordana
Jiarong Hong
J. R. Quinlan

Priscilla Rasmussen
Dan Roth
Yoram Singer
Lyle H. Ungar
Labeled test data

+ Gerald F. DeJong
- Chris Drummond
+ Yolanda Gil
- Attilio Giordana
+ Jiarong Hong
- J. R. Quinlan

- Priscilla Rasmussen
+ Dan Roth
+ Yoram Singer
- Lyle H. Ungar
Course Overview

- Introduction: Basic problems and questions
- A detailed example: Linear threshold units
- Two Basic Paradigms:
 - PAC (Risk Minimization); Bayesian Theory
- Learning Protocols
 - Online/Batch; Supervised/Unsupervised/Semi-supervised
- Algorithms:
 - Decision Trees (C4.5)
 - [Rules and ILP (Ripper, Foil)]
 - Linear Threshold Units (Winnow, Perceptron; Boosting; SVMs; Kernels)
 - Neural Networks
 - Probabilistic Representations (naïve Bayes, Bayesian trees; density estimation)
 - Unsupervised/Semi-supervised: EM
- Clustering, Dimensionality Reduction
Supervised Learning

- Given: Examples \((x, f(x))\) of some unknown function \(f\)
- Find: A good approximation of \(f\)

- \(x\) provides some representation of the input
 - The process of mapping a domain element into a representation is called Feature Extraction. (Hard; ill-understood; important)
 - \(x \in \{0,1\}^n\) or \(x \in \mathbb{R}^n\)

- The target function (label)
 - \(f(x) \in \{-1,+1\}\) Binary Classification
 - \(f(x) \in \{1,2,3,..,k-1\}\) Multi-class classification
 - \(f(x) \in \mathbb{R}\) Regression
Supervised Learning: Examples

- **Disease diagnosis**
 - x: Properties of patient (symptoms, lab tests)
 - f: Disease (or maybe: recommended therapy)

- **Part-of-Speech tagging**
 - x: An English sentence (e.g., The *can* will rust)
 - f: The part of speech of a word in the sentence

- **Face recognition**
 - x: Bitmap picture of person’s face
 - f: Name the person (or maybe: a property of)

- **Automatic Steering**
 - x: Bitmap picture of road surface in front of car
 - f: Degrees to turn the steering wheel

Many problems that do not seem like classification problems can be decomposed to classification problems. E.g, **Semantic Role Labeling**
Key Issues in Machine Learning

- **Modeling**
 - How to formulate application problems as machine learning problems? How to represent the data?
 - Learning Protocols (where is the data & labels coming from?)

- **Representation**
 - What are good hypothesis spaces?
 - Any rigorous way to find these? Any general approach?

- **Algorithms**
 - What are good algorithms?
 - How do we define success?
 - Generalization Vs. over fitting
 - The computational problem
Using supervised learning

- **What is our instance space?**
 - Gloss: What kind of features are we using?
- **What is our label space?**
 - Gloss: What kind of learning task are we dealing with?
- **What is our hypothesis space?**
 - Gloss: What kind of model are we learning?
- **What learning algorithm do we use?**
 - Gloss: How do we learn the model from the labeled data?
 - Gloss: How do we measure success?

(What is our loss function/evaluation metric?)
1. The instance space \mathcal{X}

Input

$x \in \mathcal{X}$
An item x drawn from an instance space \mathcal{X}

Learned Model

$y = g(x)$

Output

$y \in \mathcal{Y}$
An item y drawn from a label space \mathcal{Y}

Designing an appropriate instance space \mathcal{X} is crucial for how well we can predict y.
1. The instance space \mathcal{X}

- When we apply machine learning to a task, we first need to define the instance space \mathcal{X}.
- Instances $x \in \mathcal{X}$ are defined by features:
 - **Boolean features:**
 - Does this email contain the word ‘money’?
 - **Numerical features:**
 - How often does ‘money’ occur in this email?
 - What is the width/height of this bounding box?
What’s X for the Badges game?

Possible features:

- Gender/age/country of the person?
- Length of their first or last name?
- Does the name contain letter ‘x’?
- How many vowels does their name contain?
- Is the n-th letter a vowel?
\(\mathcal{X} \) is an N-dimensional vector space (e.g. \(\mathbb{R}^N \))
- Each dimension = one feature.
- Each \(\mathbf{x} \) is a feature vector (hence the boldface \(\mathbf{x} \)).
- Think of \(\mathbf{x} = [x_1 \ldots x_N] \) as a point in \(\mathcal{X} \):

\begin{align*}
\mathbf{x}_1 & \quad \mathbf{x}_2 \\
\end{align*}
From feature templates to vectors

- When designing features, we often think in terms of **templates**, not individual features:
 - **What is the 2nd letter?**
 - Naoki → [1 0 0 0 ...]
 - Abe → [0 1 0 0 ...]
 - Scrooge → [0 0 1 0 ...]
 - **What is the i-th letter?**
 - Abe → [1 0 0 0 0... 0 1 0 0 0 0... 0 0 0 0 1 ...]
 - 26*2 positions in each group;
 - # of groups == upper bounds on length of names
Good features are essential

- The choice of features is crucial for how well a task can be learned.
 - In many application areas (language, vision, etc.), a lot of work goes into designing suitable features.
 - This requires domain expertise.

- CS446 can’t teach you what specific features to use for your task.
 - But we will touch on some general principles
2. The label space y

- Input $x \in X$
 - An item x drawn from an instance space X

- Learned Model $y = g(x)$

- Output $y \in Y$
 - An item y drawn from a label space Y

- The label space Y determines what kind of supervised learning task we are dealing with.
Supervised learning tasks I

Output labels $y \in Y$ are categorical:

- **Binary classification**: Two possible labels
- **Multiclass classification**: k possible labels

- Output labels $y \in Y$ are structured objects (sequences of labels, parse trees, etc.)
- **Structure learning** (CS546 next semester)
Output labels $y \in Y$ are numerical:

- **Regression (linear/polynomial):**
 - Labels are continuous-valued
 - Learn a linear/polynomial function $f(x)$

- **Ranking:**
 - Labels are ordinal
 - Learn an ordering $f(x_1) > f(x_2)$ over input
3. The model $g(x)$

Input

$x \in X$
An item x drawn from an instance space X

Learned Model

$y = g(x)$

Output

$y \in Y$
An item y drawn from a label space Y

- We need to choose what kind of model we want to learn
A Learning Problem

\[y = f(x_1, x_2, x_3, x_4) \]

<table>
<thead>
<tr>
<th>Example</th>
<th>X1</th>
<th>X2</th>
<th>X3</th>
<th>X4</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Can you learn this function? What is it?
Hypothesis Space

Complete Ignorance:
There are $2^{16} = 65536$ possible functions over four input features.

We can’t figure out which one is correct until we’ve seen every possible input-output pair.

After seven examples we still have 2^9 possibilities for f.

Is Learning Possible?

<table>
<thead>
<tr>
<th>Example</th>
<th>X1</th>
<th>X2</th>
<th>X3</th>
<th>X4</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>?</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

- There are $|Y|^{|X|}$ possible functions $f(x)$ from the instance space X to the label space Y.
- Learners typically consider only a *subset* of the functions from X to Y, called the hypothesis space H. $H \subseteq |Y|^{|X|}$
Simple Rules: There are only 16 simple conjunctive rules of the form \(y=x_i \land x_j \land x_k \).

<table>
<thead>
<tr>
<th>Rule</th>
<th>Counterexample</th>
<th>Rule</th>
<th>Counterexample</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y=c)</td>
<td>1100 0</td>
<td>(X_2 \land X_3)</td>
<td>0011 1</td>
</tr>
<tr>
<td>(X_1)</td>
<td>0100 0</td>
<td>(X_2 \land X_4)</td>
<td>0011 1</td>
</tr>
<tr>
<td>(X_2)</td>
<td>0110 0</td>
<td>(X_3 \land X_4)</td>
<td>1001 1</td>
</tr>
<tr>
<td>(X_3)</td>
<td>0101 1</td>
<td>(X_1 \land X_2 \land X_3)</td>
<td>0011 1</td>
</tr>
<tr>
<td>(X_4)</td>
<td>0110 0</td>
<td>(X_1 \land X_2 \land X_4)</td>
<td>0011 1</td>
</tr>
<tr>
<td>(X_1 \land X_2)</td>
<td>1100 0</td>
<td>(X_1 \land X_3 \land X_4)</td>
<td>0011 1</td>
</tr>
<tr>
<td>(X_1 \land X_3)</td>
<td>0011 1</td>
<td>(X_2 \land X_3 \land X_4)</td>
<td>0011 1</td>
</tr>
<tr>
<td>(X_1 \land X_4)</td>
<td>0011 1</td>
<td>(X_1 \land X_2 \land X_3 \land X_4)</td>
<td>0011 1</td>
</tr>
</tbody>
</table>

No simple rule explains the data. The same is true for simple clauses.
Hypothesis Space (3)

m-of-n rules: There are 32 possible rules of the form \(y = 1 \) if and only if at least \(m \) of the following \(n \) variables are 1

<table>
<thead>
<tr>
<th>Variables</th>
<th>1-of</th>
<th>2-of</th>
<th>3-of</th>
<th>4-of</th>
</tr>
</thead>
<tbody>
<tr>
<td>{X1}</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>{X2}</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>{X3}</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>{X4}</td>
<td>7</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>{X1,X2}</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>{X1, X3}</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>{X1, X4}</td>
<td>6</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>{X2,X3}</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variables</th>
<th>1-of</th>
<th>2-of</th>
<th>3-of</th>
<th>4-of</th>
</tr>
</thead>
<tbody>
<tr>
<td>{X2, X4}</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>{X3, X4}</td>
<td>4</td>
<td>4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>{X1,X2, X3}</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>{X1,X2, X4}</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>{X1,X3,X4}</td>
<td>1</td>
<td>***</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>{X2, X3,X4}</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>{X1, X2, X3,X4}</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Found a consistent hypothesis.
Learning is the removal of our remaining uncertainty:
- Suppose we knew that the unknown function was an m-of-n Boolean function, then we could use the training data to infer which function it is.

Learning requires guessing a good, small hypothesis class:
- We can start with a very small class and enlarge it until it contains an hypothesis that fits the data.

We could be wrong!
- Our prior knowledge might be wrong:
 - $y=x^4 \land $ one-of (x_1, x_3) is also consistent
- Our guess of the hypothesis class could be wrong

If this is the unknown function, then we will make errors when we are given new examples, and are asked to predict the value of the function
General strategies for Machine Learning

- Develop representation languages for expressing concepts
 - Serve to limit the expressivity of the target models
 - E.g., Functional representation (n-of-m); Grammars; stochastic models;

- Develop flexible hypothesis spaces:
 - Nested collections of hypotheses. Decision trees, neural networks
 - Get flexibility by augmenting the feature space

In either case:
- Develop algorithms for finding a hypothesis in our hypothesis space, that fits the data
- And hope that they will generalize well
Terminology

- **Target function (concept):** The true function $f : X \rightarrow \{\ldots \text{Labels} \ldots\}$
- **Concept:** Boolean function. Example for which $f(x) = 1$ are positive examples; those for which $f(x) = 0$ are negative examples (instances)

- **Hypothesis:** A proposed function h, believed to be similar to f. The output of our learning algorithm.

- **Hypothesis space:** The space of all hypotheses that can, in principle, be output by the learning algorithm.

- **Classifier:** A discrete valued function produced by the learning algorithm. The possible value of f: $\{1,2,\ldots,K\}$ are the classes or class labels. (In most algorithms the classifier will actually return a real valued function that we’ll have to interpret).

- **Training examples:** A set of examples of the form $\{(x, f(x))\}$
Key Issues in Machine Learning

■ **Modeling**
 - How to formulate application problems as machine learning problems? How to represent the data?
 - Learning Protocols (where is the data & labels coming from?)

■ **Representation:**
 - What are good hypothesis spaces?
 - Any rigorous way to find these? Any general approach?

■ **Algorithms:**
 - What are good algorithms? (The Bio Example)
 - How do we define success?
 - Generalization Vs. over fitting
 - The computational problem
Example: Generalization vs Overfitting

What is a Tree?

A botanist
A tree is something with leaves I’ve seen before

Her brother
A tree is a green thing

Neither will generalize well
CS446: Policies

- **Cheating**
 - No.
 - We take it very seriously.

- **Homework:**
 - Collaboration is encouraged
 - But, you have to write your own solution/program.
 - (Please don’t use old solutions)

- **Late Policy:**
 You have a credit of 4 days (4*24hours); That’s it.

- **Grading:**
 - Possibly separate for grads/undergrads.
 - 5% Class work; 25% - homework; 30%-midterm; 40%-final;
 - Projects: 25% (4 hours)

- **Questions?**

Info page
Note also the Schedule Page and our Notes on the main page
CS446 Team

- **Dan Roth** (3323 Siebel)
 - Tuesday, 2:00 PM – 3:00 PM

- **TAs** (4407 Siebel)
 - Kai-Wei Chang: Tuesday 5:00pm-6:00pm (3333 SC)
 - Chen-Tse Tsai: Tuesday 8:00pm-9:00pm (3333 SC)
 - Bryan Lunt: Tue 8:00pm-9:00pm (1121 SC)
 - Rongda Zhu: Thursday 4:00pm-5:00pm (2205 SC)

- **Discussion Sections**: (starting next week; no Monday)
 - Mondays: 5:00pm-6:00pm 3405-SC Bryan Lunt [A-F]
 - Tuesday: 5:00pm-6:00pm 3401-SC Chen-Tse Tsai [G-L]
 - Wednesdays: 5:30pm-6:30pm 3405-SC Kai-Wei Chang [M-S]
 - Thursdays: 5:00pm-6:00pm 3403-SC Rongda Zhu [T-Z]
CS446 on the web

Check our class website:
- Schedule, slides, videos, policies
 - http://l2r.cs.uiuc.edu/~danr/Teaching/CS446-14/index.html
- Sign up, participate in our Piazza forum:
 - Announcements and discussions
 - https://piazza.com/class#fall2014/cs446
- Log on to Compass:
 - Submit assignments, get your grades
 - https://compass2g.illinois.edu

Homework:
No need to submit Hw0;
Later: submit electronically.
I don’t know \{\text{whether, weather}\} to laugh or cry

How can we make this a learning problem?

- We will look for a function
 \[F: \text{Sentences} \rightarrow \{\text{whether, weather}\} \]
- We need to define the domain of this function better.

- \textbf{An option}: For each word \(w\) in English define a Boolean feature \(x_w\) :
 \[[x_w = 1] \text{ iff } w \text{ is in the sentence} \]
- This maps a sentence to a point in \(\{0,1\}^{50,000}\)
- In this space: some points are \textbf{whether} points
 some are \textbf{weather} points

Learning Protocol?
Supervised? Unsupervised?
INTRODUCTION

Representation Step: What’s Good?

- Learning problem:
 - Find a function that best separates the data
- What function?
- What’s best?
- (How to find it?)

Linear = linear in the feature space

\[x = \text{data representation}; \ w = \text{the classifier} \]

\[y = \text{sgn} \{w^T x\} \]

A possibility: Define the learning problem to be:

Find a \textbf{(linear)} function that best separates the data

Memorizing vs. Learning
- Accuracy vs. Simplicity
- How well will you do?
- On what?
- Impact on Generalization
Expressivity

\[f(x) = \text{sgn} \{ x \cdot w - \theta \} = \text{sgn}\{\sum_{i=1}^{n} w_i x_i - \theta \} \]

- **Many functions are Linear**
 - Conjunctions:
 - \(y = x_1 \land x_3 \land x_5 \)
 - \(y = \text{sgn}\{1 \cdot x_1 + 1 \cdot x_3 + 1 \cdot x_5 - 3\}; \quad w = (1, 0, 1, 0, 1) \ \theta=3 \)
 - At least \(m \) of \(n \):
 - \(y = \text{at least 2 of } \{x_1, x_3, x_5\} \)
 - \(y = \text{sgn}\{1 \cdot x_1 + 1 \cdot x_3 + 1 \cdot x_5 - 2\} \}; \quad w = (1, 0, 1, 0, 1) \ \theta=2 \)

- **Many functions are not**
 - Xor: \(y = x_1 \land x_2 \lor \neg x_1 \land \neg x_2 \)
 - Non trivial DNF: \(y = x_1 \land x_2 \lor x_3 \land x_4 \)

- **But can be made linear**

Probabilistic Classifiers as well
Exclusive-OR (XOR)

\[(x_1 \land x_2) \lor (\neg\{x_1\} \land \neg\{x_2\})\]

In general: a parity function.

- \(x_i \in \{0, 1\}\)
- \(f(x_1, x_2, \ldots, x_n) = 1\) iff \(\sum x_i\) is even

This function is not linearly separable.
Functions Can be Made Linear

- Data are not linearly separable in one dimension
- Not separable if you insist on using a specific class of functions
Blown Up Feature Space

Data are separable in $<x, x^2>$ space

Key issue: Representation:
- what features to use.
- Computationally, can be done implicitly (kernels)
- Not always ideal.
Functions Can be Made Linear

Discrete Case

A real Weather/Whether example

$y_3 \lor y_4 \lor y_7$

New discriminator is functionally simpler

Space: $X = x_1, x_2, \ldots, x_n$

Input Transformation

New Space: $Y = \{y_1, y_2, \ldots\} = \{x_i, x_i x_j, x_i x_j x_j, \ldots\}$
Third Step: How to Learn?

- A possibility: Local search
 - Start with a linear threshold function.
 - See how well you are doing.
 - Correct
 - Repeat until you converge.

- There are other ways that do not search directly in the hypotheses space
 - Directly compute the hypothesis
A General Framework for Learning

- Goal: predict an unobserved output value $y \in Y$ based on an observed input vector $x \in X$

- Estimate a functional relationship $y \sim f(x)$ from a set $\{(x,y)_i\}_{i=1,n}$

- Most relevant - **Classification**: $y \in \{0,1\}$ (or $y \in \{1,2,\ldots,k\}$)
 - (But, within the same framework can also talk about **Regression**, $y \in \mathbb{R}$)

- What do we want $f(x)$ to satisfy?
 - We want to minimize the **Risk**: $L(f()) = E_{x,y}([f(x) \neq y])$
 - Where: $E_{x,y}$ denotes the expectation with respect to the true distribution.

Simple loss function: # of mistakes

[...] is a indicator function
We want to minimize the Loss: \(L(f()) = \mathbb{E}_{X,Y}([f(X) \neq Y]) \)

Where: \(\mathbb{E}_{X,Y} \) denotes the expectation with respect to the true distribution.

We cannot minimize this loss.

Instead, we try to minimize the empirical classification error.

For a set of training examples \(\{(X_i, Y_i)\}_{i=1,n} \)

Try to minimize: \(L'(f()) = \frac{1}{n} \sum_i [f(X_i) \neq Y_i] \)

(Include Issue I: why/when is this good enough? Not now)

This minimization problem is typically NP hard.

To alleviate this computational problem, minimize a new function – a convex upper bound of the classification error function

\[I(f(x),y) = [f(x) \neq y] = \{1 \text{ when } f(x) \neq y; 0 \text{ otherwise} \} \]
Algorithmic View of Learning: an Optimization Problem

- A Loss Function $L(f(x), y)$ measures the penalty incurred by a classifier f on example (x, y).
- There are many different loss functions one could define:
 - Misclassification Error:
 $$L(f(x), y) = 0 \text{ if } f(x) = y; \quad 1 \text{ otherwise}$$
 - Squared Loss:
 $$L(f(x), y) = (f(x) - y)^2$$
 - Input dependent loss:
 $$L(f(x), y) = 0 \text{ if } f(x) = y; \quad c(x) \text{ otherwise}$$
Here \(f(x) \) is the prediction \(\in \mathbb{R} \), \(y \in \{-1,1\} \) is the correct value.

- **0-1 Loss** \[L(y, f(x)) = \frac{1}{2} \left(1 - \text{sgn}(yf(x)) \right) \]
- **Log Loss** \[\frac{1}{\ln 2} \log (1 + \exp{-yf(x)}) \]
- **Hinge Loss** \[L(y, f(x)) = \max(0, 1 - yf(x)) \]
- **Square Loss** \[L(y, f(x)) = (y - f(x))^2 \]
Example

Putting it all together:

A Learning Algorithm
Third Step: How to Learn?

- A possibility: Local search
 - Start with a linear threshold function.
 - See how well you are doing.
 - Correct
 - Repeat until you converge.

- There are other ways that do not search directly in the hypotheses space
 - Directly compute the hypothesis
Learning Linear Separators (LTU)

\[f(x) = \text{sgn} \{ x^T \cdot w - \theta \} = \text{sgn}\{\sum_{i=1}^{n} w_i x_i - \theta \} \]

- \(x^T = (x_1, x_2, \ldots, x_n) \in \{0,1\}^n \)
 - is the feature based encoding of the data point

- \(w^T = (w_1, w_2, \ldots, w_n) \in \mathbb{R}^n \)
 - is the target function.

- \(\theta \) determines the shift with respect to the origin

\[\mathbb{R} \]

\[W \]
Canonical Representation

\[f(x) = \text{sgn} \{w^T \cdot x - \theta\} = \text{sgn}\{\sum_{i=1}^{n} w_i x_i - \theta\} \]

- \(\text{sgn} \{w^T \cdot x - \theta\} \equiv \text{sgn} \{(w')^T \cdot x'\}\)
- **Where:**
 - \(x' = (x, -1)\) and \(w' = (w, \theta)\)

- Moved from an \(n\) dimensional representation to an \((n+1)\) dimensional representation, but now can look for hyperplanes that go through the origin.
Our goal is to minimize the expected risk

\[J(w) = E_{x,y} Q(x, y, w) \]

We cannot do it. Instead, we approximate \(J(w) \) using a finite training set of independent samples \((x_i, y_i) \)

\[J(w) \approx \frac{1}{m} \sum_{1,m} Q(x_i, y_i, w) \]

Via a **batch gradient descent** algorithm.

That is, we successively compute estimates \(w^t \) of the optimal parameter vector \(w \):

\[w^{t+1} = w^t - \nabla \approx J(w) = w^t - \frac{1}{m} \sum_{1,m} \nabla Q(x_i, y_i, w) \]
Our Hypothesis Space is the collection of Linear Threshold Units

- Loss function:
 - Squared loss LMS (Least Mean Square, L_2)
 - $Q(x, y, w) = \frac{1}{2} (w^T x - y)^2$
We use gradient descent to determine the weight vector that minimizes $J(w) = \text{Err}(w)$;

- Fixing the set D of examples, $J=\text{Err}$ is a function of w^j;
- At each step, the weight vector is modified in the direction that produces the steepest descent along the error surface.
LMS: An Optimization Algorithm

- (i (subscript) – vector component; j (superscript) – time; d – example #)

Assumption: $x \in \mathbb{R}^n$; $u \in \mathbb{R}^n$ is the target weight vector; the target (label) is $t_d = u \cdot x$ Noise has been added; so, possibly, no weight vector is consistent with the data.

- Let $w^{(i)}$ be the current weight vector we have
- Our prediction on the d-th example x is:
 \[o_d = \sum_i w_i^j \cdot x_i = \vec{w}^{(i)} \cdot \vec{x} \]
- Let t_d be the target value for this example (real value; represents $u \cdot x$)
- The error the current hypothesis makes on the data set is:
 \[J(w) = \text{Err}(\vec{w}^{(i)}) = \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2 \]
Gradient Descent

- To find the best direction in the weight space \vec{w} we compute the gradient of E with respect to each of the components of

$$\nabla E(\vec{w}) \equiv \left[\frac{\partial E}{\partial w_1}, \frac{\partial E}{\partial w_2}, \ldots, \frac{\partial E}{\partial w_n} \right]$$

- This vector specifies the direction that produces the steepest increase in E;

- We want to modify \vec{w} in the direction of $-\nabla E(\vec{w})$

$$\vec{w} = \vec{w} + \Delta \vec{w}$$

- Where (with a fixed step size R):

$$\Delta \vec{w} = - R \nabla E(\vec{w})$$
Gradient Descent: LMS

- We have:
 \[\text{Err}(\vec{w}^{(j)}) = \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2 \]

- Therefore:
 \[\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2 = \]
 \[= \frac{1}{2} \sum_{d \in D} \frac{\partial}{\partial w_i} (t_d - o_d)^2 = \]
 \[= \frac{1}{2} \sum_{d \in D} 2(t_d - o_d) \frac{\partial}{\partial w_i} (t_d - \vec{w}_d \cdot \vec{x}_d) = \]
 \[= \sum_{d \in D} (t_d - o_d)(-x_{id}) \]
Gradient Descent: LMS

Weight update rule:

$$\Delta w_i = R \sum_{d \in D} (t_d - o_d)x_{id}$$

Gradient descent algorithm for training linear units:

- Start with an initial random weight vector
- For every example d with target value t_d do:
 - Evaluate the linear unit $o_d = \sum_i w_i \cdot x_{id} = \vec{w} \cdot \vec{x}_d$
 - Update \vec{w} by adding Δw_i to each component
- Continue until E below some threshold

This algorithm always converges to a local minimum of $J(w)$, for small enough steps. Here (LMS for linear regression), the surface contains only a single global minimum, so the algorithm converges to a weight vector with minimum error, regardless of whether the examples are linearly separable.

The surface may have local minimum if the loss function is different.
Incremental (Stochastic) Gradient Descent: LMS

- **Weight update rule:**

 \[\Delta w_i = R(t_d - o_d)x_{id} \]

- **Gradient descent algorithm for training linear units:**
 - Start with an initial random weight vector
 - For every example \(d \) with target value \(t_d \) do:
 - Evaluate the linear unit \(o_d = \sum_i w_i \cdot x_{id} = \vec{w} \cdot \vec{x_d} \)
 - update \(\vec{w} \) by incrementally by adding \(\Delta w_i \) to each component (update without summing over all data)
 - Continue until \(E \) below some threshold

Dropped the averaging operation. Instead of averaging the gradient of the loss over the complete training set, choose a sample \((x,y)\) at random and update \(w^t \)
Incremental (Stochastic) Gradient Descent: LMS

Weight update rule:

$$\Delta w_i = R(t_d - o_d)x_{id}$$

Gradient descent algorithm for training linear units:

- Start with an initial random weight vector
- For every example d with target value: t_d
 - Evaluate the linear unit $o_d = \sum_i w_i \cdot x_{id} = \bar{w} \cdot \bar{x}_d$
 - update \bar{w} by incrementally adding Δw_i to each component (update without summing over all data)
- Continue until E below some threshold

In general - does not converge to global minimum

Decreasing R with time guarantees convergence

But, on-line algorithms are sometimes advantageous...
In the general (non-separable) case the learning rate \(R \) must decrease to zero to guarantee convergence.

The learning rate is called the *step size*. There are more sophisticated algorithms that choose the step size automatically and converge faster.

Choosing a better starting point also has impact.

The gradient descent and its stochastic version are very simple algorithms, but almost all the algorithms we will learn in the class can be traced back to gradient decent algorithms for different loss functions and different hypotheses spaces.
Assume the data is linearly separable.

Sample complexity:
- Suppose we want to ensure that our LTU has an error rate (on new examples) of less than \(\varepsilon \) with high probability (at least \(1 - \delta \)).
- How large does \(m \) (the number of examples) must be in order to achieve this? It can be shown that for \(n \) dimensional problems
 \[
 m = O\left(\frac{1}{\varepsilon} \left[\ln\left(\frac{1}{\delta}\right) + (n+1) \ln\left(\frac{1}{\varepsilon}\right) \right] \right).
 \]

Computational complexity: What can be said?
- It can be shown that there exists a polynomial time algorithm for finding consistent LTU (by reduction from linear programming).
- [Contrast with the NP hardness for 0-1 loss optimization]
- (On-line algorithms have inverse quadratic dependence on the margin)
Other Methods for LTUs

- Fisher Linear Discriminant:
 - A direct computation method

- Probabilistic methods (naïve Bayes):
 - Produces a stochastic classifier that can be viewed as a linear threshold unit.

- Winnow/Perceptron
 - A multiplicative/additive update algorithm with some sparsity properties in the function space (a large number of irrelevant attributes) or features space (sparse examples)

- Logistic Regression, SVM...many other algorithms