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ωNot the most general setting 
for on-line learning.
ωNot the most general metric 
ω(Regret: cumulative loss; 
Competitive analysis)

On-Line Learning

Model:
Ç Instance space: X (dimensionality ςn)

Ç Target: f: X­{0,1}, f ÍC, concept class (parameterized by n)

Protocol: 

Ç learner is given xÍX

Ç learner predicts h(x), and is then given f(x) (feedback)

Performance: learner makes a mistake when h(x) f̧(x)
Ç number of mistakes algorithm A makes on sequence S of 

examples, for the target function f.

A is a mistake bound algorithm for the concept class C,  
if MA(c) is a polynomial in n, the complexity parameter 
of the target concept. 

),(max)( , SfMCM ASCfA Í=
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Representation

Assume that you want to learn conjunctions. Should your hypothesis 
space be the class of conjunctions?
Ç Theorem:   Given a sample on n attributes that is consistent with a conjunctive 

concept, it is NP-hard to find a pure conjunctive hypothesis that is both 
consistent with the sample and has the minimum number of attributes. 

Ç ώ5ŀǾƛŘ IŀǳǎǎƭŜǊΣ !LWΩууΥ άvǳŀƴǘƛŦȅƛƴƎ Inductive Bias: AI Learning Algorithms and Valiant'sLearning CǊŀƳŜǿƻǊƪέϐ 

Same holds for Disjunctions.

Intuition: Reduction to minimum set cover problem.

Ç Given a collection of sets that cover X, define a set of examples  so that 
learning the best (dis/conj)junction implies a minimal cover.

Consequently, we cannot learn the concept efficiently as a 
(dis/con)junction.

But, we will see that we can do that, if we are willing to learn the 
concept as a Linear Threshold function.

In a more expressive class, the search for a good hypothesis 
sometimes becomes combinatorially easier.
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Linear Functions

Disjunctions

At least m of n:

Exclusive-OR:

Non-trivial DNF  

3

f (x)=
1      if    w1 x1 + w2 x2 +. . . wnxn>= q

0   Otherwise {

y=  (x1 Lx2 v ) (x1 Lx2)

y= (x1 Lx2) v (x3 Lx4)

y= x1  Ùx3   Ùx5

y= ( 1Åx1 + 1Åx3  + 1Åx5 >= 1)

y= at least 2 of {x1 , x3 ,   x5}

y= ( 1Åx1 + 1Åx3  + 1Åx5 >=2)
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Perceptron learning rule

We learn f:X­{-1,+1} represented as f =sgn{w¶x)

Where X=  {0,1}n  or X= Rn and wÍRn

Given Labeled examples:  {(x1, y1), (x2, y2ύΣΧόxm, ym)}

4

1. Initialize w=0Í

2.   Cycle through all examples          

a. Predict the label of instance x to beȅΩ Ґ sgn{w¶x)

b. If ȅΩ̧y, updatethe weight vector: 

w = w + r y x (r - a constant, learning rate)

hǘƘŜǊǿƛǎŜΣ ƛŦ ȅΩҐȅΣ ƭŜŀǾŜ ǿŜƛƎƘǘǎ ǳƴŎƘŀƴƎŜŘΦ

n
R
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Perceptron Convergence

Perceptron Convergence Theorem:

If there exist a set of weights that are consistent with 
the data (i.e., the data is linearly separable), the 
perceptron learning algorithm will converge
Ç How long would it take to converge ?

Perceptron Cycling Theorem: 

If the training data is not linearly separable the 
perceptron learning algorithm will eventually repeat 
the same set of weights and therefore enter an 
infinite loop.
Ç How to provide robustness, more expressivity ? 

5
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Perceptron: Mistake Bound 
Theorem

Maintains a weight vector wÍRN,    w0=όлΣΧΣлύΦ

Upon receiving an example x ÍRN

Predicts according to the linear threshold function 
ǿωȄ²0.

Theorem [Novikoff,1963] Let (x1; y1ύΣΧΣΥ όxt; yt), be a 
sequence of labeled examples with xiÍ< N, ||xi||¢R and 
yiÍ{-1,1} for all i. Let uÍ< N,g> 0 be such that, 

|| u|| = 1 and yi u ω xi²gfor all i. 

Then Perceptron makes at mostR2 / g2 mistakes on 
this example sequence.

(see additional notes)

6
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Robustness to Noise

In the case of non-separable data , the extent to which a data 
point fails to have margin ®via the hyperplanew can be 
quantified by a  slack variable 

¹i= max(0, ®ҍ yi w¢xi). 
Observe that when ¹i = 0, the example xi has margin at least ®. 
Otherwise, it grows linearly with ҍ yi w¢xi

Denote: D2 = [ä{¹i
2}]1/2

Theorem: The perceptron is 

guaranteedto make no more than 

((R+D2)/®)
2 mistakes on any sequence

of examples satisfying ||xi||
2<R

Perceptron is expected to 

have some robustness to noise. 
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Winnow Algorithm

The Winnow Algorithm learns Linear Threshold 
Functions. 

For the class of disjunctions:
Ç instead of demotionwe can use elimination. 
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(demotion) 1)x (if   /2w    w,xbut   w  0f(x)  If

)(promotion  1)x (if   2w    w,xwbut     1f(x)  If

nothing  do :mistake no If

xw  iff   1    is    Prediction
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Winnow ςMistake Bound

Claim: Winnow makes O(k log n) mistakes on k-
disjunctions

u - # of mistakes on positive examples  (promotions)

v - # of mistakes on negative examples (demotions)

1. u < k log(2n)
A weight that corresponds to a good variable is only promoted.

When these weights get to n there will be no more mistakes on 
positives.
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I Regularization Via Averaged 
Perceptron

An Averaged Perceptron Algorithm is motivated by the following 
considerations:

Ç Every Mistake-Bound Algorithm can be converted efficiently to a PAC 
algorithm ςto yield global guarantees on performance.

Ç In the mistake bound model:

Á We ŘƻƴΩǘ ƪƴƻǿ ǿƘŜƴ ǿŜ ǿƛƭƭ ƳŀƪŜ ǘƘŜ mistakes. 

Ç In the PAC model: 

Á Dependence is on number of examples seen and not number of mistakes.

Á Which hypothesis will you chooseΧΚΚ

Á Being consistent with more examples is better 

Toconvert a given Mistake Bound algorithm (into a global guarantee algorithm):

Ç Wait for a long stretch w/o mistakes  (there must be one)

Ç Use the hypothesis at the end of this stretch.

Ç Its PAC behavior is relative to the length of the stretch.

Averaged Perceptron returns a weighted average of a number of 
earlier hypotheses; the weights are a function of the length of no-
mistakes stretch. 

10



SVMs /{ппс Cŀƭƭ Ωмс

I Regularization Via Averaged 
Perceptron (or Winnow)

Training: 

[m: #(examples); k: #(mistakes) = #(hypotheses); ci: consistency count for vi ]

Input: a labeled training set {(x1, y1ύΣΧόxm, ym)}

Number of epochs T

Output: a list of weighted perceptrons{(v1, c1ύΣΧΣόvk, ck)}

Initialize: k=0; v1 = 0, c1 = 0

Repeat T times:

Ç For i =мΣΧƳΥ

Ç /ƻƳǇǳǘŜ ǇǊŜŘƛŎǘƛƻƴ ȅΩ Ґ ǎƛƎƴόvk¢xi )

Ç LŦ ȅΩ Ґ ȅΣ   ǘƘŜƴ ck = ck + 1

else: vk+1=  vk + yi x ; ck+1= 1; k = k+1

Prediction:

Given: a list of weighted perceptrons{(v1, c1ύΣΧόvk, ck)} ; a new example x

Predictthe label(x) as follows:

y(x)=  sign [ ä1, k ci sign(vi¢x) ] 

11
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II Perceptron with Margin

Thick Separator  (aka as Perceptron with Margin)     
(Applies both for Perceptron and Winnow)

Promote if:

Ç w x -q< g

Demote if:

Ç w x -q> g

12

w ¢x = 0

- --
- -

-

-
- -

- -

- -

-

-

w ¢x = q

Note: gis a functional margin. Its effect could disappear as w grows.
Nevertheless, this has been shown to be a very effective algorithmic addition.
(Grove & Roth 98,01; Karovet. al 97) 
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Winnow - Extensions

This algorithm learns monotone functions

For the general case: 
Ç Duplicate variables (down side?)

Ç For the negation of variable x, introduce a new variable y.

Ç Learn monotone functions over 2n variables

Balanced version:
Ç Keep two weights for each variable; effective weight is the 

difference

Ç ²ŜΩƭƭ ŎƻƳŜ ōŀŎƪ ǘƻ ǘƘƛǎ ƛŘŜŀ ǿƘŜƴ ǘŀƭƪƛƴƎ ŀōƻǳǘ ƳǳƭǘƛŎƭŀǎǎΦ 
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Winnow ςA Robust Variation

Modeling: 
Ç !ŘǾŜǊǎŀǊȅΩǎ turn: may change the target concept by adding 

or removing some variable from the target disjunction. 

ÁCost of each addition move is 1.

Ç [ŜŀǊƴŜǊΩǎ turn: makes prediction on the examples given, and 
is then told the correct answer (according to current target 
function)

Ç Winnow-RΥ  {ŀƳŜ ŀǎ ²ƛƴƴƻǿΣ ƻƴƭȅ ŘƻŜǎƴΩǘ ƭŜǘ ǿŜƛƎƘǘǎ Ǝƻ 
below 1/2

Ç Claim:  Winnow-R makes O(c log n) mistakes, (c - cost of 
adversary) (generalization of previous claim)

14
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General Stochastic Gradient 
Algorithms 

Given examples {z=(x,y)}1, m from a distribution over XxY, we are 
trying to learn a linear function, parameterized by a weight vector w, 
so that we minimize the expected risk function

J(w) = Ez Q(z,w) ~=~ 1/m ä1, m Q(zi, wi)
In Stochastic Gradient Descent Algorithms we approximate this 
minimization by incrementally updating the weight vector w as 
follows: 

wt+1 = wtςrt gw Q(zt, wt) = wtςrt gt

Where g_t = gw Q(zt, wt) is the gradient with respect to w at time t. 

The difference between algorithms now amounts to choosing a 
different loss function Q(z, w)

15
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wt+1 = wtςrt gw Q(zt, wt) = wtςrt gt

LMS:Q((x, y), w) =1/2 (y ςw ¢x)2

leads to the update rule (Also called ²ƛŘǊƻǿΩǎAdaline):
wt+1 = wt + r (ytςwt¢xt) xt

Here, even though we make binary predictions based on sign (w ¢x) 
we do not take the signof the dot-product into account in the loss.

Another common loss function is:
Hinge loss: 
Q((x, y), w) = max(0, 1 - y w ¢x)

This leads to the perceptronupdate rule:

If yi wi¢xi > 1   (No mistake, by a margin):       No update
Otherwise (Mistake, relative to margin): wt+1 = wt + r yt xt

Stochastic Gradient Algorithms 

16
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wt+1 = wtςrt gw Q(zt, wt) = wtςrt gt

(notice that this is a vector, each coordinate (feature) has its own wt,j and gt,j)

So far, we used fixed learning rates r = rt, but this can change. 
AdaGradalters the update to adapt based on historical information, 
so that frequently occurring features in the gradients get small 
learning rates and infrequent features get higher ones. 
¢ƘŜ ƛŘŜŀ ƛǎ ǘƻ άƭŜŀǊƴ ǎƭƻǿƭȅέ ŦǊƻƳ ŦǊŜǉǳŜƴǘ ŦŜŀǘǳǊŜǎ ōǳǘ άpay 
ŀǘǘŜƴǘƛƻƴέ ǘƻ ǊŀǊŜ ōǳǘ ƛƴŦƻǊƳŀǘƛǾŜ ŦŜŀǘǳǊŜǎ.
5ŜŦƛƴŜ ŀ άǇŜǊ ŦŜŀǘǳǊŜέ ƭŜŀǊƴƛƴƎ ǊŀǘŜ ŦƻǊ ǘƘŜ ŦŜŀǘǳǊŜ j, as: 

rt,j = r/(Gt,j)
1/2

whereGt,j = äk=1, t g2
k,j the sum of squares of gradients at feature j

until time t.
Overall, the update rule for Adagradis:

wt+1,j = wt,j - gt,j r/(Gt,j)
1/2

This algorithm is supposed to update weights faster than Perceptron 
or LMS when needed.

New Stochastic Gradient 
Algorithms 

17
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Regularization

The more general formalism adds a regularizationterm to the risk 
function, and attempts to minimize: 

J(w) = ä1, m Q(zi, wi) + ¶Ri (wi)
²ƘŜǊŜ w ƛǎ ǳǎŜŘ ǘƻ ŜƴŦƻǊŎŜ άǎƛƳǇƭƛŎƛǘȅέ ƻŦ ǘƘŜ ƭŜŀǊƴŜŘ ŦǳƴŎǘƛƻƴǎΦ 

LMS case: Q((x, y), w) =(y ςw ¢x)2

Ç R(w) = || w|| 2
2gives the optimization problem called Ridge Regression.

Ç R(w) = || w|| 1 gives a problem called the LASSO problem

Hinge Loss case: Q((x, y), w) = max(0, 1 - y w ¢x)
Ç R(w) = || w|| 2

2 gives the problem called Support Vector Machines

Logistics Loss case:  Q((x,y),w) = log (1+exp{-y w ¢x}) 
Ç R(w) = || w|| 2

2 gives the problem called Logistics Regression

These are convex optimization problems and, in principle, the same gradient 
descent mechanism can be used in all cases. 
²Ŝ ǿƛƭƭ ǎŜŜ ƭŀǘŜǊ ǿƘȅ ƛǘ ƳŀƪŜǎ ǎŜƴǎŜ ǘƻ ǳǎŜ ǘƘŜ άǎƛȊŜέ ƻŦ ǿ ŀǎ ŀ ǿŀȅ ǘƻ 
ŎƻƴǘǊƻƭ άǎƛƳǇƭƛŎƛǘȅέΦ

18
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Generalization

Dominated by the sparseness of the function space
Ç Most features are irrelevant

# of examples required by multiplicative algorithms 
depends mostly on # of relevant features
Ç (Generalization bounds depend on the target ||u|| )

# of examples required by additive algoirithmsdepends 
heavily on sparseness of features space: 
Ç Advantage to  additive. Generalization depend on input ||x||

Á(Kivinen/Warmuth95).

19
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Which Algorithm to Choose?

Generalization

Ç Multiplicative algorithms:

ÁBounds depend on||u||, the separating hyperplane; i: example #)

ÁMw =2ln n ||u||1
2 maxi||x

(i)||1
2 /mini(u ¢x(i))2

ÁDo not care much about data; advantage with sparse target u

Ç Additive algorithms:

ÁBounds depend on ||x|| (Kivinen/ Warmuth, ó95)

ÁMp = ||u||2
2 maxi||x

(i)||2
2/mini(u ¢x(i))2

ÁAdvantage with few active features per example

20

The l1 norm: ||x||1 = äi|xi|              The l2 norm: ||x||2 =(ä1
n|xi|

2)1/2

The lp norm: ||x||p = (ä1
n|xi|

P
)
1/p

The l1 norm: ||x||1 = max
i
|x

i
|
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Making data linearly separable

21

f(x) = 1 iff  x1
2 + x2

2 Ò  1
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Making data linearly separable

22

Transform data: x = (x1, x2 )  => ȄΩ = (x1
2, x2

2 ) 
f(ȄΩύ Ґ м ƛŦŦ  ȄΩ1Ҍ ȄΩ2 Җ  м

In order to deal with this, we 
introduce two new concepts: 

Dual Representation

Kernel (& the kernel trick)
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Let w be an initial weight vector for perceptron. Let (x1,+), (x2,+), (x3,-), (x4,-) be 
examples and assume mistakes are made on x1, x2 and x4. 
What is the resulting weight vector? 

w = w + x1 + x2 - x4

In general, the weight vector w can be written 
as a linear combination of examples: 

w = ä1,m r ¬i yi xi
Where¬i is the number of mistakesmade on xi.

Dual Representation

Note: We care about the dot 
product: f(x) = w ¢x =

= (ä1,m r¬i yi xi) ¢x            
= ä1,m r¬i yi (xi¢x) 
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Kernel Based Methods

A method to  run Perceptron on a very large feature set, 
without incurring the cost of keeping a very large weight vector. 

Computing the dot product can be done in the original feature 
space.

Notice:this pertains only to efficiency: The classifier is identical 
to the one you get by blowing up the feature space.

Generalization is still relative to the real dimensionality (or, 
related properties).

Kernelswere popularized by SVMs, but many other algorithms 
can make use of them (== run in the dual). 
Ç Linear Kernels: no kernels; stay in the original space. A lot of applications  

actually use linear kernels.

24
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Implementation

Simply run Perceptron in an on-line mode, but keep 
track of the set M.

Keeping the set M allows us to keep track of S(z).

Rather than remembering the weight vector w,    
remember the set M (P and D) ςall those examples 
on which we made mistakes.

Dual Representation

25
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Kernels ςGeneral Conditions

Kernel Trick: You want to work with degree 2 polynomial features, (x). 
Then, your dot product will be in a space of dimensionality n(n+1)/2. The 
kernel trick allows you to save and compute dot products in an n 
dimensional space. 

Can we use any K(.,.)? 
Ç A function K(x,z) is a valid kernel if it corresponds to an inner product in some 

(perhaps infinite dimensional) feature space. 

Take the quadratic kernel: k(x,z) = (xTz)2

Example: Direct construction  (2 dimensional, for simplicity): 

K(x,z) = (x1 z1 + x2 z2)
2 = x1

2 z1
2 +2x1 z1 x2 z2 + x2

2 z2
2

= (x1
2, sqrt{2} x1x2, x2

2) (z1
2, sqrt{2} z1z2, z2

2)  

= (x)T (z) Ą A dot product in an expanded space.

It is not necessary to explicitly show the feature function .

General condition: construct the Gram matrix {k(xi ,zj)}; ŎƘŜŎƪ ǘƘŀǘ ƛǘΩǎ 

positive semi definite.  

26
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The Kernel Matrix

The Gram matrix of a set of n vectors S = {x1Χxn} is 
the n×n matrix Gwith Gij = xixj

Ç The kernel matrix is the Gram matrix of {˒όx1ύΣ ΧΣ˒(xn)} 

Ç (size depends on the # of examples, not dimensionality) 

Direct option: 
Ç LŦ ȅƻǳ ƘŀǾŜ ǘƘŜ ˒όxiύΣ ȅƻǳ ƘŀǾŜ ǘƘŜ DǊŀƳ ƳŀǘǊƛȄ όŀƴŘ ƛǘΩǎ 

easy to see that it will be positive semi-definite)

Indirect:
Ç If you have the Kernel, write down the Kernel matrix Kij, and 

show that it is a legitimate kernel, without an explicit 
construction of ˒ όxi)

27
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Constructing New Kernels

You can construct new kernels ƪΩ(x, ȄΩ) from 
existing ones:

Ç Multiplying k(x, ȄΩ) by a constant c:
ƪΩ(x, ȄΩ) = ck(x, ȄΩ)

Ç Multiplying k(x, ȄΩ) by a function f applied to x andȄΩ: 
kΩ(x, ȄΩ) = f(x)k(x, ȄΩ)f(ȄΩ)

Ç Applying a polynomial (with non-negative coefficients) to 
k(x, ȄΩ): 
kΩ(x, ȄΩ) = P( k(x, ȄΩ) )  with P(zύ Ґ ңi aiz

i andaiҗ0

Ç Exponentiating k(x, ȄΩ):
kΩ(x, ȄΩ) = exp(k(x, ȄΩ))

29
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A method to  run Perceptron on a very large feature set, 
without incurring the cost of keeping a very large weight vector. 

Computing the weight vector can be done in the original feature 
space.

Notice: this pertains only to efficiency:the classifier is identical 
to the one you get by blowing up the feature space.
Generalizationis still relative to the real dimensionality (or, 
related properties).
Kernels were popularized by SVMs but apply to a range of 
models, Perceptron, Gaussian Models, PCAs, etc. 

Summary ςKernel Based Methods
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Efficiency-Generalization 
Tradeoff

There is a tradeoff between the computational
efficiencywith which these kernels can be computed 
and the generalization abilityof the classifier.  

For example, using such kernels the Perceptron
algorithm can make an exponential number of
mistakes even when learning simple functions.
ώYƘŀǊŘƻƴΣwƻǘƘΣ{ŜǊǾŜŘƛƻΣbLt{Ω01; BenDavidet al.]

In addition,computingwith kernelsdependsstrongly
on the number of examples. It turns out that
sometimesworking in the blown up spaceis more
efficient than usingkernels.ώ/ǳƳōȅΣwƻǘƘΣL/a[Ω03]

31
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Explicit & Implicit Kernels: 
Complexity

Is it always worthwhile to define kernels and work in 
the dual space? 

Computationally: [Cumby,Roth2003]

Ç Dual space ςt1 m2 vs, Primal Space ςt2 m

Ç Where m is # of examples, t1, t2 are the sizes of the (Dual, 
Primal) feature spaces, respectively.

Ç Typically, t1 << t2, so it boils down to the number of 
examples one needs to considerrelative to the growth in 
dimensionality. 

Rule of thumb: a lot of examples Ą use Primal space

Most applications today: People use explicitkernels. That is, 
they blow up the feature space explicitly. 
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Kernels: Generalization

Do we want to use the most expressive kernels we 
can? 
Ç (e.g., when you want to add quadratic terms, do you really 

want to add all of them?)

No; this is equivalent to working in a larger feature 
space, and will lead to overfitting. 

Here is a simple argument that shows that simply 
adding irrelevant features does not help. 
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Kernels: Generalization(2)

Given:  A linearly separable set of points S={x1ΣΧxn} 2 Rn with 
separator  w 2 Rn

Embed  S into a higher  dimensional space ƴΩҔƴ, by adding 
zero-mean random noise e to the additional dimensions.

Then ǿΩ ¢x= (w,0) ¢(x,e) = w ¢x 

SoǿΩ 2 RnΩstill separates S.

We will now look at ®/||x|| which we have shown to be 
inversely proportional to generalization (and mistake bound) ?

gό{Σ ǿΩύκμμȄΩμμ Ґ minS ǿΩ
TȄΩ κ μμǿΩμμ μμȄΩμμ Ґ 

minSwTȄ κμμǿμμ μμȄΩμμ ғ gό{Σ ǿΩύκμμx|| 

Since μμȄΩμμ Ґ μμόx,e)|| > ||x||

The new ratio is larger, which implies generalizationsuffers.

Intuition: adding a lot of noisy/irrelevant features cannot help
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Multi-Layer Neural Network

Multi-layer network were designed to overcome the 
computational (expressivity) limitation  of a single 
threshold element. 

The idea is to stack several 

layers of threshold elements, 

each layer using the output of 

the previous layer as input.  

Multi-layer networks can represent arbitrary 
functions, but  building effective learning methods 
for such network was [thought to be] difficult. 

35
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Basic Units 

Linear Unit: Multiple layers of linear functions  
oj = w ¢x produce linear functions.  We want to 
represent nonlinear functions.

Threshold units:  oj = sgn(w ¢x) 

are not differentiable, hence 

unsuitable for gradient descent. 

The key idea (Rumelhart, Hinton, Williiam, 1986)  was 
to notice that the discontinuity of the threshold 
element can be represents by a smooth non-linear 
approximation: oj = [1+ exp{-w ¢x}]-1
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Learning with a Multi-Layer  
Perceptron

LǘΩǎ Ŝŀǎȅ ǘƻ ƭŜŀǊƴ ǘƘŜ ǘƻǇ ƭŀȅŜǊ ςƛǘΩǎ Ƨǳǎǘ ŀ ƭƛƴŜŀǊ ǳƴƛǘΦ 

Given feedback (truth) at the top layer, and the activation at the 
layer below it, you can use the Perceptron update rule (more 
generally, gradient descent) to updated these weights.

The problem is what to do with 

the other set of weights ςwe do

not get feedback in the 

intermediate layer(s). 
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Learning with a Multi-Layer  
Perceptron

The problem is what to do with 

the other set of weights ςwe do 

not get feedback in the 

intermediate layer(s). 

Solution:If all the activation 

functions are differentiable, then 

the output of the network is also 

a differentiable function of the input and weights in the network.

Define an error function (e.g., sum of squares) that is a differentiable 
function of the output, that this error function is also a differentiable 
function of the weights. 

We can then evaluate the derivatives of the error with respect to the 
weights, and use these derivatives to find weight values that minimize this 
error function.  This can be done, for example, using gradient descent (or 
other optimization methods). 

This results in an algorithm called back-propagation.
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Computational Learning Theory

What general laws constrain inductive learning ?
Ç What learning problems can be solved ? 

Ç When can we trust the output of a  learning  algorithm ? 

We seek theory to relate
Ç Probability of successful Learning

Ç Number of training examples

Ç Complexity of hypothesis space

Ç Accuracy to which target concept is approximated

Ç Manner in which training examples are presented
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Quantifying Performance

We want to be able to say something rigorous about 
the performance of our learning algorithm.

We will concentrate on discussing the number of 
examples one needs to seebefore we can say that 
our learned hypothesis is good. 

40

Recall what we 
did earlier: 
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PAC Learning ςIntuition 

41

ωWe have seen many examples (drawn according to D ) 
ωSince in all the positive examplesx1 was active, it is very likely that it will be

active in future positive examples 
ωIf not, in any case, x1 is active only in a small percentage of the 

examples so our error will be small 

10054321 xxxxxxh ØØØØØ=

f

h

f and h disagree

+
+
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h(x)][f(x)Error
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Formulating Prediction Theory
Instance Space  X, Input to the Classifier;     Output Space Y = {-1, +1} 

Making predictions with: h: X Ą Y 

D: An unknown distribution over X Y 

S: A set of examples drawn independently from D; m = |S|, size of sample.

Now we can define:

True Error: ErrorD = Pr(x,y) 2 D [h(x) : = y]

Empirical Error: ErrorS= Pr(x,y) 2 S [h(x) : = y] = ä1,m [h(xi) : = yi]

Ç (Empirical Error (Observed Error, or Test/Train error, depending on S))

This will allow us to ask:  (1)Can we describe/bound  ErrorD given ErrorS ?

Function Space: C ςA set of possible target concepts; target is: f: X Ą Y 

Hypothesis Space:H ςA set of possible hypotheses

This will allow us to ask: (2) Is C learnable?

Ç Is it possible to learna given function in Cusing functions in H, given the 
supervised protocol? 
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Probably Approximately Correct

Cannot expect a learner to learn a concept exactly.

Cannot always expect to learn a close approximation 
to the target concept 

Therefore, the only realistic expectation of a good 
learner is that with high probability it will learn a 
close approximation to the target concept.

In Probably Approximately Correct (PAC)learning, 
one requires that given smallparameters eandd,  
with probability at least (1-d) a learner produces a 
hypothesis witherror at most  e

The reason we can hope for that is theConsistent 
Distribution assumption.
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PAC Learnability

Consider a  concept class C defined over an instance space X
(containing instances of length n),  and a learner Lusing a 
hypothesis space H.  

Cis PAC learnable by Lusing H if

Ç for all f ÍC,

Ç for all distributions D  over X, and fixed 0< e, d< 1, 

L, given a collection of m examples sampled independently 
according to Dproduces 

Ç with probability at least(1-d) a hypothesis h ÍH with error at 
most e, (ErrorD= PrD[f(x) : = h(x)]) 

where m is polynomial in 1/ e, 1/ d, n and size(H)

C is efficiently learnable if Lcan produce the hypothesis in time
polynomial in 1/ e, 1/ d, n and size(H)
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PAC Learnability

We impose two limitations: 

Polynomial sample complexity  (information theoretic constraint)

Ç Is there enough information in the sample to distinguish a 
hypothesis h that approximate f ?  

Polynomial time complexity (computational complexity)

Ç Is there an efficient algorithm that can process the sample and 
produce a good hypothesis h ? 

To be PAC learnable, there must be a hypothesis h ÍHwith 
arbitrary small error for every f ÍC. We generally assume H ÉC. 
(Properly PAC learnable if H=C) 

Worst Case definition: the algorithm must meet its accuracy 

Ç for everydistribution (The distribution free assumption)

Ç for everytarget function f in the class C 
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hŎŎŀƳΩǎ wŀȊƻǊ όмύ
Claim:The probability that there exists a hypothesish ÍHthat 

(1) is consistent with mexamples and 
(2) satisfies error(h) >e ( ErrorD(h) = Prx 2 D [f(x) : =h(x)] )

is less than   |H|(1-e)m .

e-<=
Í

1)]()([Pr xhxf
Dx

mH )1(|| e-

m)1( e-

Proof: Let h be such a bad hypothesis. 

- The probability that h is consistent with one example of f is

- Since the mexamples are drawn independently of each other, 

The probability that h is consistent with mexample of f is less than

- The probability that some hypothesis in His consistent with mexamples

is less than
bƻǘŜ ǘƘŀǘ ǿŜ ŘƻƴΩǘ ƴŜŜŘ ŀ ǘǊǳŜ f for 
this argument; it can be done with h, 
relative to a distribution over X Y. 
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hŎŎŀƳΩǎ wŀȊƻǊ όмύ
We want this probability to be smaller than d, that is:

|H|(1-e)  <  d

ln(|H|) + m ln(1-e)  <  ln(d)

(with e-x = 1-x+x2/2+é; e-x > 1-x; ln (1-e)  < - e; gives a safer d)

(gross over estimate)

It is called Occamõs razor, because it indicates a preference towards small 

hypothesis spaces 

What kind of hypothesis spaces do we want ?         Large ?            Small ?

To guarantee consistency we need H ÉC.    But do we want the smallestH possible ?

m

)}/1ln(|){ln(|
1

d
e

+> Hm

We showed that a         
m-consistent hypothesis 
generalizes well (err< )
(Appropriate m is a 
function of |H|, , ̄ )

What do we know now 
about the Consistent 
Learner scheme?
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Consistent Learners
Immediately from the definition, we get the following general scheme 
for PAC learning:

Given a sample D of m examples

Ç Find some h ÍH that is consistent with all m examples

ÁWe showed that if m is large enough, a consistent hypothesis must be close 
enough to f 

ÁCheck that m is not too large (polynomial in the relevant parameters) : we 
ǎƘƻǿŜŘ ǘƘŀǘ ǘƘŜ άŎƭƻǎŜƴŜǎǎέ ƎǳŀǊŀƴǘŜŜ ǊŜǉǳƛǊŜǎ ǘƘŀǘ 

m > 1/ (ln |H| + ln 1/ )̄ 

Ç Show that the consistent hypothesis h ÍHcan be computed efficiently

In the case of conjunctions 

Ç We used the Elimination algorithm to find a hypothesis h that is consistent 
with the training set  (easy to compute) 

Ç We showed directlythat if we have sufficiently many examples (polynomial 
in the parameters), than h is close to the target function.

We did not need to show it directly.  
See above.
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Computational Complexity
Determining whether there is a 2-term DNF consistent 
with a set of training data is NP-Hard

Therefore the class of k-term-DNFis not efficiently 
(properly) PAC learnable  due to computational complexity

We have seen an algorithm for learning k-CNF.

And,  k-CNFis a superset of k-term-DNF
Ç (That is, every k-term-DNF can be written as a k-CNF)

Therefore, C=k-term-DNFcan be learned as using H=k-CNF
as the hypothesis Space

Importance of representation:

Ç Concepts that cannot be learned using one representation can 
be learned using another  (more expressive) representation.

C

H

This result is analogous to an earlier 
ƻōǎŜǊǾŀǘƛƻƴ ǘƘŀǘ ƛǘΩǎ ōŜǘǘŜǊ ǘƻ ƭŜŀǊƴ 
linear separators than conjunctions.
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Negative Results ςExamples 
Two types of nonlearnability results:

Complexity Theoretic

Ç Showing that various concepts classes cannot be learned, based 
on well-accepted assumptions from computational complexity 
theory. 

Ç E.g. : C cannot be learned unless P=NP

Information Theoretic

Ç The concept class is sufficiently rich that a polynomial number of 
examples may not be sufficient to distinguish a particular target 
concept. 

Ç .ƻǘƘ ǘȅǇŜ ƛƴǾƻƭǾŜ άǊŜǇǊŜǎŜƴǘŀǘƛƻƴ ŘŜǇŜƴŘŜƴǘέ ŀǊƎǳƳŜƴǘǎΦ

Ç The proof shows that a given class cannot be learned by 
algorithms using hypotheses from the same class.  (So?)

Usually proofs are for EXACT learning, but apply for the 
distribution free case.
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Agnostic Learning
Assume we are trying to learn a concept f using hypotheses 
in H, but f ÎH 

In this case, our goal should be to find a hypothesis h ÍH,   
with a small training error:

We want a guarantee that a hypothesis with a small training 
error will have a good  accuracy on unseen examples

Hoeffdingbounds characterize the deviation between the 
true probability of some event and its observedfrequency 
over m independent trials.
Ç (p is the underlying probability of the binary variable (e.g., toss is 

Head) being 1)

|)}()(;_{|
1

)( xhxfexamplestrainingx
m

hErrTR ¸Í=

)]()([Pr)( xhxfhErr DxD ¸= Í

22][ ee mepp -<+>
$
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Agnostic Learning
Therefore, the probability that an element in H will have training error which is 
off by more than ecan be bounded as follows:

Doing the same union bound  game as before, with  
d=|H|e -2me2

We get a generalization bound ςa bound on how much will the true error ED

deviate from the observed (training) error ETR.

For any distribution Dgenerating training and test instances, with probability at 
least 1-dover the choice of the training set of size m, (drawn IID), for all hÍH

m

H
hErrorhError TRD

2

)/1log(||log
)()(

d+
+<

22])()([ ee m

TRD ehErrhErr -<+>Pr
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Agnostic Learning

An agnostic learner which makes no commitment to 
whether f is in Hand returns the hypothesis with least 
training error over at least the following number of 
examples m can guarantee with probability at least (1-d)  
that its training error is not off by more than efrom the 
true error.

)}/1ln(|){ln(|
2

1
2

d
e

+> Hm
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Infinite Hypothesis Space

The previous analysis was restricted to finite 
hypothesis spaces 

Some infinite hypothesis spaces are more expressive 
than others
Ç E.g., Rectangles, vs. 17- sides convex polygons vs. general 

convex polygons

Ç Linear threshold function vs. a conjunction of LTUs

Need a measure of the expressiveness of an infinite 
hypothesis space other than its size 

The Vapnik-Chervonenkisdimension (VC dimension)  
provides such a measure. 

Analogous to |H| , there are bounds for sample 
complexity using VC(H)
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Shattering

55

ÅWe say that a set S of examplesis shatteredby a set of functions Hif 

for every partitionof the examples in S into positive and negative examples

there is a functionin H that gives exactly these labels to the examples

(Intuition:  A rich set of functions shatters large sets of points)

Left bounded intervals on the real axis:[0,a),for some real number a>0

Sets oftwopoints cannot be shattered

(we mean: given two points, you can label them in such a way that 

no concept in this class will be consistent with  their labeling)

0 a

+ + + + + --

0 a

+ + + + +

-

-

+
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VC Dimension

56

ÅWe say that a set S of examplesis shatteredby a set of functions Hif 

for every partitionof the examples in S into positive and negative examples

there is a functionin H that gives exactly these labels to the examples

ÅThe VC dimensionof hypothesis spaceHover instance space X

is the size of the largest finite subset of X that is shattered by H.

ÅIf  there existsa subset of size d that can be shattered, then VC(H) >=d

ÅIf no subset of sizedcan be shattered, then VC(H) < d

VC(Half intervals) = 1 (nosubset of size 2can be shattered)

VC( Intervals) = 2 (nosubset of size 3can be shattered)

VC(Half-spaces in the plane) = 3(nosubset of size 4can be shattered)

Even if only one subset of this size does it!

Some are shattered, but some are 

not
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Sample Complexity & VC Dimension

57

What if H is 

finite?

ÅUsing VC(H) as a measure of expressiveness we have an Occam algorithm

for infinite hypothesis spaces.

ÅGiven a sample D of mexamples

Å Find some h ÍH that is consistent with all mexamples

Å If 

Å

Å Then with probability at least (1-d),hhas error less than e.

(that is, if mis polynomial we have a PAClearning algorithm;

to be efficient, we need to produce the hypothesis hefficiently. 

ÅNotice that to shattermexamples it must be that: |H|>2m, so log(|H|)̧ VC(H)

)}
2

log(4
13

log)(8{
1

dee
+> HVCm
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Learning Rectangles

58

ÅConsider axis parallel rectangles in the real plan

ÅCan we PAC learn it ? 

(1) What is the VC dimension ?

ÅBut, no five instances can be shattered

There can be at most 4 distinct

extreme points (smallest or largest 

along some dimension) and these 

cannot be included (labeled +)

without including the 5th point.

Therefore VC(H) = 4

As far as sample complexity, this guarantees PAC learnabilty.
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Sample Complexity Lower Bound

59

ÅThere is also a general lower bound on the minimum number of examples 

necessary  for PAC leaning in the general case.

ÅConsider any concept class Csuch that VC(C)>2, 

any learnerLand small enough e, d.  

Then, there exists  a distribution D and a target function in C such that 

if L observes less than 

examples, then with probability at least d, 

L outputs a hypothesis having error(h) > e.

Ignoring constant factors, the lower bound is the same as the upper bound,

except for the extra log(1/e) factor in the upper bound.

]
32
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Boosting

Boosting is (today) a general learning paradigm for putting 
together a Strong Learner, given a collection (possibly 
infinite) of Weak Learners.

The original Boosting Algorithm was proposed as an answer 
to a theoretical question in PAC learning. [The Strength of Weak 
Learnability; Schapire, 89]

Consequently, Boosting has interesting theoretical 
implications, e.g., on the relations between PAC learnability 
and compression.
Ç If a concept class is efficiently PAC learnable then it is efficiently PAC 

learnable by an algorithm whose required memory is bounded by a 
polynomial in n, size c and log(1/e).

Ç There is no concept class for which efficient PAC learnability requires 
that the entire sample be contained in memory at one time ςthere is 
ŀƭǿŀȅǎ ŀƴƻǘƘŜǊ ŀƭƎƻǊƛǘƘƳ ǘƘŀǘ άŦƻǊƎŜǘǎέ Ƴƻǎǘ ƻŦ ǘƘŜ ǎŀƳǇƭŜΦ 
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The Boosting Approach

Algorithm
Ç Select a small subset of examples

Ç Derive a rough rule of thumb

Ç Examine 2nd set of examples

Ç Derive 2nd rule of thumb

Ç Repeat T times

Ç Combine the learned rules into a single hypothesis

Questions:
Ç How to choose subsets of examples to examine on each round?

Ç How to combine all the rules of thumb into single prediction rule?

Boosting 
Ç General method of converting rough rules of thumb into highly 

accurate prediction rule
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A Formal View of Boosting

Given training set (x1, y1ύΣ Χ όxm, ym)

yi 2 {-1, +1} is the correct label of instance xi 2 X

CƻǊ ǘ Ґ мΣ ΧΣ ¢
Ç Construct a distributionDtƻƴ ϑмΣΧƳϒ

Ç Find weak hypothesis όάǊǳƭŜ ƻŦ ǘƘǳƳōέύ

ht : X ! {-1, +1}

with small error t on Dt:

t = PrD [ht (xi) : = yi]

Output: final hypothesis Hfinal
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Adaboost

Constructing Dtƻƴ ϑмΣΧƳ}:

Ç D1(i) = 1/m 

Ç Given Dt and ht : 

Ç Dt+1 =             Dt(i)/zt e-¬t if yi = ht(xi)

Dt(i)/zt e+¬t if yi : = ht (xi)

=              Dt(i)/zt exp(-¬t yi ht (xi))

where zt = normalization constant

and 

¬t = ½ ln{ (1 - tʁ)/ tʁ } 

Final hypothesis: Hfinal (x) = sign (ät ¬t ht(x) )

63

< 1; smaller weight

> 1; larger weight

Notes about ¬t:               
Ç Positive due to the weak learning 

assumption
Ç Examples that we predicted correctlyare 

demoted, others promoted
Ç Sensible weighting scheme:   better 

hypothesis (smaller error) Ą larger weight

Think about unwrapping it all 
the way to 1/m

e+¬t = sqrt{(1 - t)/t }>1 
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A Toy Example
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A Toy Example
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A Toy Example
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A Toy Example
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A Toy Example

68

A cool and important note 
about the final hypothesis: 
it is possible that the 
combined hypothesis makes 
no mistakes on the training 
data, but boosting can still 
learn, by adding more weak 
hypotheses.
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Summary of Ensemble Methods 

Boosting

Bagging

Random Forests
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Boosting
Initialization:

ÇWeigh all training samples equally

Iteration Step:

Ç Train model on (weighted) train set

ÇCompute error of model on train set

Ç Increase weights on training cases model gets wrong!!!

¢ȅǇƛŎŀƭƭȅ ǊŜǉǳƛǊŜǎ мллΩǎ ǘƻ млллΩǎ ƻŦ ƛǘŜǊŀǘƛƻƴǎ

Return final model: 

ÇCarefully weighted prediction of each model
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Bagging
Bagging predictors is a method for generating multiple versions of a 
predictor and using these to get an aggregated predictor.

The aggregation averages over the versions when predicting a numerical 
outcome and does a plurality vote when predicting a class.

The multiple versions are formed by making bootstrap replicates of the 
learning set and using these as new learning sets.
Ç That is, use samples of the data, with repetition

Tests on real and simulated data sets using classification and regression 
trees and subset selection in linear regression show that bagging can give 
substantial gains in accuracy.

The vital element is the instability of the prediction method. If perturbing 
the learning set can cause significant changes in the predictor constructed 
then bagging can improve accuracy.
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Example: Bagged Decision Trees
Draw 100 bootstrap samples of data

Train trees on each sample Ą 100 trees

Average prediction of trees on out-of-bag samples

72

é

Average prediction

(0.23 + 0.19 + 0.34 + 0.22 + 0.26 + é + 0.31) / # Trees = 0.24



SVMs /{ппс Cŀƭƭ Ωмс

Random Forests (Bagged Trees++)

Draw 1000+bootstrap samples of data

Draw sample of available attributes at each split

Train trees on each sample/attribute set Ą 1000+trees

Average prediction of trees on out-of-bag samples

73

é

Average prediction

(0.23 + 0.19 + 0.34 + 0.22 + 0.26 + é + 0.31) / # Trees = 0.24
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Classification

So far we focused on Binary Classification

For linear models: 
Ç Perceptron, Winnow, SVM, GD, SGD

The prediction is simple: 
Ç Given an examplex, 

Ç Prediction = sgn(wTx)

Ç Where w is the learned model

The outputis a single bit
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Multi-Categorical Output Tasks

Multi-class Classification (y  Í{1,...,K})
Ç ŎƘŀǊŀŎǘŜǊ ǊŜŎƻƎƴƛǘƛƻƴ όΨсΩύ

Ç ŘƻŎǳƳŜƴǘ ŎƭŀǎǎƛŦƛŎŀǘƛƻƴ όΨƘƻƳŜǇŀƎŜΩύ

Multi-label Classification (y Ì{1,...,K})
Ç ŘƻŎǳƳŜƴǘ ŎƭŀǎǎƛŦƛŎŀǘƛƻƴ όΨόƘƻƳŜǇŀƎŜΣŦŀŎǳƭǘȅǇŀƎŜύΩύ

Category Ranking (y  ÍpK)
Ç ǳǎŜǊ ǇǊŜŦŜǊŜƴŎŜ όΨόƭƻǾŜ Ҕ ƭƛƪŜ Ҕ ƘŀǘŜύΩύ

Ç ŘƻŎǳƳŜƴǘ ŎƭŀǎǎƛŦƛŎŀǘƛƻƴ όΨƘƻƳǇŀƎŜ Ҕ ŦŀŎǳƭǘȅǇŀƎŜ Ҕ ǎǇƻǊǘǎΩύ

Hierarchical Classification (y Ì{1,..,K})
Ç cohere with class hierarchy

Ç ǇƭŀŎŜ ŘƻŎǳƳŜƴǘ ƛƴǘƻ ƛƴŘŜȄ ǿƘŜǊŜ ΨǎƻŎŎŜǊΩ ƛǎ-ŀ ΨǎǇƻǊǘΩ
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Setting

Learning:
Ç Given a data set D = {(xi , yi)}1

m

Ç Where xi 2 Rn, yi 2 ϑмΣнΣΧΣƪϒΦ

Prediction (inference):
Ç Given an example x, and a learned function (model),

Ç Output a single class labels y.
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Binary to Multiclass

Most schemes for multiclass classification work by 
reducing the problem to that of binary classification. 

The are multiple ways to decompose the multiclass 
prediction into multiple binary decisions
Ç One-vs-all

Ç All-vs-all

Ç Error correcting codes

We will then talk about a more general scheme:
Ç Constraint Classification

It can be used to model other non-binary 
classification and leads to Structured Prediction.
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One-Vs-All

Assumption: Each class can be separated from all the 
restusing a binary classifier in the hypothesis space.

Learning: Decomposed to learning k independent 
binary classifiers, one for each class label.

Learning: 
Ç Let Dbe the set of training examples. 

Ç 8 label l, construct a binary classification problem as follows:

ÁPositive examples: Elements of D with label l

ÁNegative examples: All other elements of D

Ç This is a binary learning problem that we can solve, producing 
k binary classifiers w1, w2Σ Χwk

Decision: Winner Takes All (WTA): 
Ç f(x) = argmaxi wi

Tx
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Solving MultiClasswith 1vs All 
learning

MultiClassclassifier

Ç Function  f : Rn
Ą {1,2,3,...,k}

Decompose into binary problems

Not always possible to learn 

No theoretical justification 
Ç Need to make sure the range of all classifiers is the same

(unless the problem is easy)
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Learning via One-Versus-All (OvA) Assumption

Find vr,vb,vg,vyÍRn such that 
Ç vr.x> 0 iff y = red     Ã

Ç vb.x> 0 iff y = blue Õ

Ç vg.x> 0 iff y = green Õ

Ç vy.x> 0 iff y = yellow Õ

Classification: f(x)= argmaxi vi x

H = Rnk

Real Problem
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All-Vs-All

Assumption: There is a separation between every pair of classes 
using a binary classifier in the hypothesis space.

Learning:Decomposed to learning [k choose 2] ~ k2

independent binary classifiers, one corresponding to each pair 
of class labels. For the pair (i, j):

Ç Positive example: all exampelswith label i

Ç Negative examples: all examples with label j 

Decision: More involved, since output of binary classifier may 
not cohere. Each label gets k-1 votes.

Decision Options: 

Ç Majority: classify example x to take label i if i wins on x more often 
than j όƧҐмΣΧƪύ 

Ç A tournament: start with n/2 pairs; continue with winners .



SVMs /{ппс Cŀƭƭ Ωмс

Learning via All-Verses-All (AvA) Assumption

Find vrb,vrg,vry,vbg,vby,vgyÍRd such that 

Ç vrb.x> 0 if y = red
< 0 if y = blue

Ç vrg.x> 0 if y = red
< 0 if y = green

Ç ... (for all pairs)

Individual 

Classifiers

Decision 

Regions

H = Rkkn

How to 

classify?

It is possible to 
separate all k classes 
with the O(k2) 
classifiers
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Classifying with AvA

Tournament

1 red, 2 yellow, 2 green
Č ?

Majority Vote

All are post-learning and mightcause weird stuff
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One-vs-All vs.All vs. All

Assume m examples, k class labels. 

Ç For simplicity, say, m/k in each.

One vs. All:

Ç classifier fi: m/k (+)and (k-1)m/k (-)

Ç Decision: 

Ç Evaluate k linear classifiers and do Winner Takes All (WTA): 

Ç f(x) = argmaxi fi(x)  =  argmaxi wi
Tx

All vs. All:

Ç Classifier fij: m/k (+) and m/k (-)

Ç More expressivity, but less examples to learn from.

Ç Decision: 

Ç Evaluate k2 linear classifiers; decision sometimes unstable.  

What type of learning methods would prefer All vs. All 
(efficiency-wise)?  (Think about Dual/Primal)
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Problems with Decompositions
Learning optimizes over localmetrics
Ç Does not guarantee good globalperformance

Ç We ŘƻƴΩǘ ŎŀǊŜ ŀōƻǳǘ ǘƘŜ ǇŜǊŦƻǊƳŀƴŎŜ ƻŦ ǘƘŜ localclassifiers

Poor decomposition Ý poor performance
Ç Difficult local problems

Ç Irrelevant local problems

Especially true for Error Correcting Output Codes
Ç Another (class of) decomposition

Ç Difficulty: how to make sure that the resulting problems are separable.

Efficiency: e.g., All vs. All vs. One vs. All

Former has advantage when working with the dual space.

Not clear how to generalize multi-class to problems with a very large # of 
output.
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wŜŎŀƭƭΥ ²ƛƴƴƻǿΩǎ 9ȄǘŜƴǎƛƻƴǎ

Winnow learns monotone Boolean functions

We extended to general Boolean functions via

ά.ŀƭŀƴŎŜŘ ²ƛƴƴƻǿέ
Ç 2 weights per variable; 

Ç Decision:ǳǎƛƴƎ ǘƘŜ άŜŦŦŜŎǘƛǾŜ ǿŜƛƎƘǘέΣ 

the difference between w+ and w-

Ç This is equivalent to the Winner take all decision 

Ç Learning: In principle, it is possible to use the 1-vs-all rule and update each set 
of n weights separatelyΣ ōǳǘ ǿŜ ǎǳƎƎŜǎǘŜŘ ǘƘŜ άōŀƭŀƴŎŜŘέ ¦ǇŘŀǘŜ ǊǳƭŜ ǘƘŀǘ 
takes into account how both sets of n weights predict on example x

 

If [(w
+-w

-)¶x²q] y̧, wi

+«wi

+r yxi , wi

-«wi

-r-yxi

Positive

w+

Negative
w-

Can this be generalized to the case of k
labels, k >2? ²Ŝ ƴŜŜŘ ŀ άƎƭƻōŀƭέ 

learning approach
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Extending Balanced

In a 1-vs-all training you have a target node that represents 
positiveexamples and target node that represents negative
examples. 

Typically, we train each node separately (mine/not-mine 
example).

Rather, given an example we could say: this is more a + example 
than a ςexample. 

We compared the activation of the different target nodes 
(classifiers) on a given example.  (This example is more class+
than class-)

Can this be generalized to the case of k labels, k >2? 

 

If [(w
+-w

-)¶x²q] y̧, wi

+«wi

+r yxi , wi

-«wi

-r-yxi
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Recall: Margin for binary classifiers

The marginof a hyperplanefor a dataset is the 
distance between the hyperplaneand the data point 
nearest to it.
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Multiclass Margin

89
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Multiclass SVM (Intuition)

Recall: Binary SVM
Ç Maximize margin

Ç Equivalently, 

Minimize norm of weights such that the closest points to the 
hyperplanehave a score 1

Multiclass SVM
Ç Each label has a different weight vector (like one-vs-all)

Ç Maximize multiclass margin

Ç Equivalently,

Minimize total norm of the weights such that the true label is 
scored at least 1 more than the second best one
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Multiclass SVM in the separable case

91

Recall hard binary SVM

The score for the true label is higher than the score 
for any other label by 1

Size of the weights. Effectively, 
regularizer
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Multiclass SVM: General case

92

The score for the true label is higher than the score 
for any other label by 
1 -¹i

Size of the weights. Effectively, 
regularizer

Slack variables. Not all 
examples need to satisfy  the 

margin constraint. 

¢ƻǘŀƭ ǎƭŀŎƪΦ 9ŦŦŜŎǘƛǾŜƭȅΣ ŘƻƴΩǘ 
allow too many examples to 
violate the margin constraint

Slack variables can only be 
positive
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Multiclass SVM: Summary

Training:
Ç hǇǘƛƳƛȊŜ ǘƘŜ άƎƭƻōŀƭέ {±a ƻōƧŜŎǘƛǾŜ

Prediction:
Ç Winner takes all

argmaxi wi
Tx

With K labels and inputs in < n, we have nKweights in all
Ç Same as one-vs-all

Why does it work?
Ç ²Ƙȅ ƛǎ ǘƘƛǎ ǘƘŜ άǊƛƎƘǘέ ŘŜŦƛƴƛǘƛƻƴ ƻŦ ƳǳƭǘƛŎƭŀǎǎ ƳŀǊƎƛƴΚ

A theoretical justification, along with extensions to other algorithms 
ōŜȅƻƴŘ {±a ƛǎ ƎƛǾŜƴ ōȅ ά/ƻƴǎǘǊŀƛƴǘ /ƭŀǎǎƛŦƛŎŀǘƛƻƴέ
Ç Applies also to multi-label problems, ranking problems, etc. 
Ç [DavZimak; with D. Roth and S. Har-Peled]
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Details: KeslerConstruction & 
Multi-Class Separability

Transform Examples

2>1

2>3

2>4

2>1

2>3

i>j f i(x) - f j(x) > 0

wiÖx - wjÖx > 0

W ÖX i - W ÖX j > 0

W Ö(X i - X j) > 0

W ÖX ij > 0

X i = (0,x,0,0) ÍRkd

X j = (0,0,0,x) ÍRkd

X ij = X i - X j = (0,x,0,-x)

W = (w1,w2,w3,w4) ÍRkd

2>4

If (x,i) was a given n-dimensional 
example (that is, x has is labeled i, 
then 

xij, 8ƧҐмΣΧƪΣ j: = i, are positive 
examples in the nk-dimensional 
space. ςxij are negative examples. 
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Learning via YŜǎƭŜǊΩǎConstruction
Given (x1, y1), ..., (xN, yN) ÍRn x {1,...,k}

Create 
Ç P+ = ÇP+(xi,yi)

Ç Pς= ÇPς(xi,yi)

Find w = (w1, ..., wk) ÍRkn, such that 
Ç w.x separates P+ from Pς

One can use any algorithm in this space: Perceptron, Winnow, SVM, etc.

To understand how to update the weight vector in the n-dimensional 
space, we note that

wT¢xyyΩ̧ 0 (in the nk-dimensional space)

is equivalent to: 

(wy
TςwȅΩ

T) ¢x ̧ 0 (in the n-dimensional space)
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