
SVMs /{ппс Cŀƭƭ Ωмс

ωNot the most general setting
for on-line learning.
ωNot the most general metric
ω(Regret: cumulative loss;
Competitive analysis)

On-Line Learning

Model:
Ç Instance space: X (dimensionality ςn)

Ç Target: f: X­{0,1}, f ÍC, concept class (parameterized by n)

Protocol:

Ç learner is given xÍX

Ç learner predicts h(x), and is then given f(x) (feedback)

Performance: learner makes a mistake when h(x) f̧(x)
Ç number of mistakes algorithm A makes on sequence S of

examples, for the target function f.

A is a mistake bound algorithm for the concept class C,
if MA(c) is a polynomial in n, the complexity parameter
of the target concept.

),(max)(, SfMCM ASCfA Í=

1

SVMs /{ппс Cŀƭƭ Ωмс

Representation

Assume that you want to learn conjunctions. Should your hypothesis
space be the class of conjunctions?
Ç Theorem: Given a sample on n attributes that is consistent with a conjunctive

concept, it is NP-hard to find a pure conjunctive hypothesis that is both
consistent with the sample and has the minimum number of attributes.

Ç ώ5ŀǾƛŘ IŀǳǎǎƭŜǊΣ !LWΩууΥ άvǳŀƴǘƛŦȅƛƴƎ Inductive Bias: AI Learning Algorithms and Valiant'sLearning CǊŀƳŜǿƻǊƪέϐ

Same holds for Disjunctions.

Intuition: Reduction to minimum set cover problem.

Ç Given a collection of sets that cover X, define a set of examples so that
learning the best (dis/conj)junction implies a minimal cover.

Consequently, we cannot learn the concept efficiently as a
(dis/con)junction.

But, we will see that we can do that, if we are willing to learn the
concept as a Linear Threshold function.

In a more expressive class, the search for a good hypothesis
sometimes becomes combinatorially easier.

2

SVMs /{ппс Cŀƭƭ Ωмс

Linear Functions

Disjunctions

At least m of n:

Exclusive-OR:

Non-trivial DNF

3

f (x)=
1 if w1 x1 + w2 x2 +. . . wnxn>= q

0 Otherwise {

y= (x1 Lx2 v) (x1 Lx2)

y= (x1 Lx2) v (x3 Lx4)

y= x1 Ùx3 Ùx5

y= (1Åx1 + 1Åx3 + 1Åx5 >= 1)

y= at least 2 of {x1 , x3 , x5}

y= (1Åx1 + 1Åx3 + 1Åx5 >=2)

SVMs /{ппс Cŀƭƭ Ωмс

Perceptron learning rule

We learn f:X­{-1,+1} represented as f =sgn{w¶x)

Where X= {0,1}n or X= Rn and wÍRn

Given Labeled examples: {(x1, y1), (x2, y2ύΣΧόxm, ym)}

4

1. Initialize w=0Í

2. Cycle through all examples

a. Predict the label of instance x to beȅΩ Ґ sgn{w¶x)

b. If ȅΩ̧y, updatethe weight vector:

w = w + r y x (r - a constant, learning rate)

hǘƘŜǊǿƛǎŜΣ ƛŦ ȅΩҐȅΣ ƭŜŀǾŜ ǿŜƛƎƘǘǎ ǳƴŎƘŀƴƎŜŘΦ

n
R

SVMs /{ппс Cŀƭƭ Ωмс

Perceptron Convergence

Perceptron Convergence Theorem:

If there exist a set of weights that are consistent with
the data (i.e., the data is linearly separable), the
perceptron learning algorithm will converge
Ç How long would it take to converge ?

Perceptron Cycling Theorem:

If the training data is not linearly separable the
perceptron learning algorithm will eventually repeat
the same set of weights and therefore enter an
infinite loop.
Ç How to provide robustness, more expressivity ?

5

SVMs /{ппс Cŀƭƭ Ωмс

Perceptron: Mistake Bound
Theorem

Maintains a weight vector wÍRN, w0=όлΣΧΣлύΦ

Upon receiving an example x ÍRN

Predicts according to the linear threshold function
ǿωȄ²0.

Theorem [Novikoff,1963] Let (x1; y1ύΣΧΣΥ όxt; yt), be a
sequence of labeled examples with xiÍ< N, ||xi||¢R and
yiÍ{-1,1} for all i. Let uÍ< N,g> 0 be such that,

|| u|| = 1 and yi u ω xi²gfor all i.

Then Perceptron makes at mostR2 / g2 mistakes on
this example sequence.

(see additional notes)

6

Complexity Parameter

SVMs /{ппс Cŀƭƭ Ωмс

Robustness to Noise

In the case of non-separable data , the extent to which a data
point fails to have margin ®via the hyperplanew can be
quantified by a slack variable

¹i= max(0, ®ҍ yi w¢xi).
Observe that when ¹i = 0, the example xi has margin at least ®.
Otherwise, it grows linearly with ҍ yi w¢xi

Denote: D2 = [ä{¹i
2}]1/2

Theorem: The perceptron is

guaranteedto make no more than

((R+D2)/®)
2 mistakes on any sequence

of examples satisfying ||xi||
2<R

Perceptron is expected to

have some robustness to noise.

7

- --- -
-

-
- -

- -

- -

-

-

SVMs /{ппс Cŀƭƭ Ωмс

Winnow Algorithm

The Winnow Algorithm learns Linear Threshold
Functions.

For the class of disjunctions:
Ç instead of demotionwe can use elimination.

8

(demotion) 1)x (if /2w w,xbut w 0f(x) If

)(promotion 1)x (if 2w w,xwbut 1f(x) If

nothing do :mistake no If

xw iff 1 is Prediction

 w :Initialize

iii

iii

i

=«²¶=

=«<¶=

²¶

==

q

q

q

q 1n;

SVMs /{ппс Cŀƭƭ Ωмс

Winnow ςMistake Bound

Claim: Winnow makes O(k log n) mistakes on k-
disjunctions

u - # of mistakes on positive examples (promotions)

v - # of mistakes on negative examples (demotions)

1. u < k log(2n)
A weight that corresponds to a good variable is only promoted.

When these weights get to n there will be no more mistakes on
positives.

9

(demotion) 1)x (if /2w w,xbut w 0f(x) If

)(promotion 1)x (if 2w w,xwbut 1f(x) If

nothing do :mistake no If

xw iff 1 is Prediction

 w :Initialize

iii

iii

i

=«²¶=

=«<¶=

²¶

== 1n;

q

q

q

q

SVMs /{ппс Cŀƭƭ Ωмс

I Regularization Via Averaged
Perceptron

An Averaged Perceptron Algorithm is motivated by the following
considerations:

Ç Every Mistake-Bound Algorithm can be converted efficiently to a PAC
algorithm ςto yield global guarantees on performance.

Ç In the mistake bound model:

Á We ŘƻƴΩǘ ƪƴƻǿ ǿƘŜƴ ǿŜ ǿƛƭƭ ƳŀƪŜ ǘƘŜ mistakes.

Ç In the PAC model:

Á Dependence is on number of examples seen and not number of mistakes.

Á Which hypothesis will you chooseΧΚΚ

Á Being consistent with more examples is better

Toconvert a given Mistake Bound algorithm (into a global guarantee algorithm):

Ç Wait for a long stretch w/o mistakes (there must be one)

Ç Use the hypothesis at the end of this stretch.

Ç Its PAC behavior is relative to the length of the stretch.

Averaged Perceptron returns a weighted average of a number of
earlier hypotheses; the weights are a function of the length of no-
mistakes stretch.

10

SVMs /{ппс Cŀƭƭ Ωмс

I Regularization Via Averaged
Perceptron (or Winnow)

Training:

[m: #(examples); k: #(mistakes) = #(hypotheses); ci: consistency count for vi]

Input: a labeled training set {(x1, y1ύΣΧόxm, ym)}

Number of epochs T

Output: a list of weighted perceptrons{(v1, c1ύΣΧΣόvk, ck)}

Initialize: k=0; v1 = 0, c1 = 0

Repeat T times:

Ç For i =мΣΧƳΥ

Ç /ƻƳǇǳǘŜ ǇǊŜŘƛŎǘƛƻƴ ȅΩ Ґ ǎƛƎƴόvk¢xi)

Ç LŦ ȅΩ Ґ ȅΣ ǘƘŜƴ ck = ck + 1

else: vk+1= vk + yi x ; ck+1= 1; k = k+1

Prediction:

Given: a list of weighted perceptrons{(v1, c1ύΣΧόvk, ck)} ; a new example x

Predictthe label(x) as follows:

y(x)= sign [ä1, k ci sign(vi¢x)]

11

SVMs /{ппс Cŀƭƭ Ωмс

II Perceptron with Margin

Thick Separator (aka as Perceptron with Margin)
(Applies both for Perceptron and Winnow)

Promote if:

Ç w x -q< g

Demote if:

Ç w x -q> g

12

w ¢x = 0

- --
- -

-

-
- -

- -

- -

-

-

w ¢x = q

Note: gis a functional margin. Its effect could disappear as w grows.
Nevertheless, this has been shown to be a very effective algorithmic addition.
(Grove & Roth 98,01; Karovet. al 97)

SVMs /{ппс Cŀƭƭ Ωмс

Winnow - Extensions

This algorithm learns monotone functions

For the general case:
Ç Duplicate variables (down side?)

Ç For the negation of variable x, introduce a new variable y.

Ç Learn monotone functions over 2n variables

Balanced version:
Ç Keep two weights for each variable; effective weight is the

difference

Ç ²ŜΩƭƭ ŎƻƳŜ ōŀŎƪ ǘƻ ǘƘƛǎ ƛŘŜŀ ǿƘŜƴ ǘŀƭƪƛƴƎ ŀōƻǳǘ ƳǳƭǘƛŎƭŀǎǎΦ

13

(demotion) 1 where2
2

1
 ,)(but 0)(If

)(promotion 1 where
2

1
 2 ,)(but 1)(If

:Rule Update

=««²¶-=

=««¢¶-=

--++-+

--++-+

iiiii

iiiii

xwwwwxwwxf

xwwwwxwwxf

q

q

SVMs /{ппс Cŀƭƭ Ωмс

Winnow ςA Robust Variation

Modeling:
Ç !ŘǾŜǊǎŀǊȅΩǎ turn: may change the target concept by adding

or removing some variable from the target disjunction.

ÁCost of each addition move is 1.

Ç [ŜŀǊƴŜǊΩǎ turn: makes prediction on the examples given, and
is then told the correct answer (according to current target
function)

Ç Winnow-RΥ {ŀƳŜ ŀǎ ²ƛƴƴƻǿΣ ƻƴƭȅ ŘƻŜǎƴΩǘ ƭŜǘ ǿŜƛƎƘǘǎ Ǝƻ
below 1/2

Ç Claim: Winnow-R makes O(c log n) mistakes, (c - cost of
adversary) (generalization of previous claim)

14

SVMs /{ппс Cŀƭƭ Ωмс

General Stochastic Gradient
Algorithms

Given examples {z=(x,y)}1, m from a distribution over XxY, we are
trying to learn a linear function, parameterized by a weight vector w,
so that we minimize the expected risk function

J(w) = Ez Q(z,w) ~=~ 1/m ä1, m Q(zi, wi)
In Stochastic Gradient Descent Algorithms we approximate this
minimization by incrementally updating the weight vector w as
follows:

wt+1 = wtςrt gw Q(zt, wt) = wtςrt gt

Where g_t = gw Q(zt, wt) is the gradient with respect to w at time t.

The difference between algorithms now amounts to choosing a
different loss function Q(z, w)

15

SVMs /{ппс Cŀƭƭ Ωмс

wt+1 = wtςrt gw Q(zt, wt) = wtςrt gt

LMS:Q((x, y), w) =1/2 (y ςw ¢x)2

leads to the update rule (Also called ²ƛŘǊƻǿΩǎAdaline):
wt+1 = wt + r (ytςwt¢xt) xt

Here, even though we make binary predictions based on sign (w ¢x)
we do not take the signof the dot-product into account in the loss.

Another common loss function is:
Hinge loss:
Q((x, y), w) = max(0, 1 - y w ¢x)

This leads to the perceptronupdate rule:

If yi wi¢xi > 1 (No mistake, by a margin): No update
Otherwise (Mistake, relative to margin): wt+1 = wt + r yt xt

Stochastic Gradient Algorithms

16

w ¢x

SVMs /{ппс Cŀƭƭ Ωмс

wt+1 = wtςrt gw Q(zt, wt) = wtςrt gt

(notice that this is a vector, each coordinate (feature) has its own wt,j and gt,j)

So far, we used fixed learning rates r = rt, but this can change.
AdaGradalters the update to adapt based on historical information,
so that frequently occurring features in the gradients get small
learning rates and infrequent features get higher ones.
¢ƘŜ ƛŘŜŀ ƛǎ ǘƻ άƭŜŀǊƴ ǎƭƻǿƭȅέ ŦǊƻƳ ŦǊŜǉǳŜƴǘ ŦŜŀǘǳǊŜǎ ōǳǘ άpay
ŀǘǘŜƴǘƛƻƴέ ǘƻ ǊŀǊŜ ōǳǘ ƛƴŦƻǊƳŀǘƛǾŜ ŦŜŀǘǳǊŜǎ.
5ŜŦƛƴŜ ŀ άǇŜǊ ŦŜŀǘǳǊŜέ ƭŜŀǊƴƛƴƎ ǊŀǘŜ ŦƻǊ ǘƘŜ ŦŜŀǘǳǊŜ j, as:

rt,j = r/(Gt,j)
1/2

whereGt,j = äk=1, t g2
k,j the sum of squares of gradients at feature j

until time t.
Overall, the update rule for Adagradis:

wt+1,j = wt,j - gt,j r/(Gt,j)
1/2

This algorithm is supposed to update weights faster than Perceptron
or LMS when needed.

New Stochastic Gradient
Algorithms

17

SVMs /{ппс Cŀƭƭ Ωмс

Regularization

The more general formalism adds a regularizationterm to the risk
function, and attempts to minimize:

J(w) = ä1, m Q(zi, wi) + ¶Ri (wi)
²ƘŜǊŜ w ƛǎ ǳǎŜŘ ǘƻ ŜƴŦƻǊŎŜ άǎƛƳǇƭƛŎƛǘȅέ ƻŦ ǘƘŜ ƭŜŀǊƴŜŘ ŦǳƴŎǘƛƻƴǎΦ

LMS case: Q((x, y), w) =(y ςw ¢x)2

Ç R(w) = || w|| 2
2gives the optimization problem called Ridge Regression.

Ç R(w) = || w|| 1 gives a problem called the LASSO problem

Hinge Loss case: Q((x, y), w) = max(0, 1 - y w ¢x)
Ç R(w) = || w|| 2

2 gives the problem called Support Vector Machines

Logistics Loss case: Q((x,y),w) = log (1+exp{-y w ¢x})
Ç R(w) = || w|| 2

2 gives the problem called Logistics Regression

These are convex optimization problems and, in principle, the same gradient
descent mechanism can be used in all cases.
²Ŝ ǿƛƭƭ ǎŜŜ ƭŀǘŜǊ ǿƘȅ ƛǘ ƳŀƪŜǎ ǎŜƴǎŜ ǘƻ ǳǎŜ ǘƘŜ άǎƛȊŜέ ƻŦ ǿ ŀǎ ŀ ǿŀȅ ǘƻ
ŎƻƴǘǊƻƭ άǎƛƳǇƭƛŎƛǘȅέΦ

18

SVMs /{ппс Cŀƭƭ Ωмс

Generalization

Dominated by the sparseness of the function space
Ç Most features are irrelevant

of examples required by multiplicative algorithms
depends mostly on # of relevant features
Ç (Generalization bounds depend on the target ||u||)

of examples required by additive algoirithmsdepends
heavily on sparseness of features space:
Ç Advantage to additive. Generalization depend on input ||x||

Á(Kivinen/Warmuth95).

19

SVMs /{ппс Cŀƭƭ Ωмс

Which Algorithm to Choose?

Generalization

Ç Multiplicative algorithms:

ÁBounds depend on||u||, the separating hyperplane; i: example #)

ÁMw =2ln n ||u||1
2 maxi||x

(i)||1
2 /mini(u ¢x(i))2

ÁDo not care much about data; advantage with sparse target u

Ç Additive algorithms:

ÁBounds depend on ||x|| (Kivinen/ Warmuth, ó95)

ÁMp = ||u||2
2 maxi||x

(i)||2
2/mini(u ¢x(i))2

ÁAdvantage with few active features per example

20

The l1 norm: ||x||1 = äi|xi| The l2 norm: ||x||2 =(ä1
n|xi|

2)1/2

The lp norm: ||x||p = (ä1
n|xi|

P
)
1/p

The l1 norm: ||x||1 = max
i
|x

i
|

SVMs /{ппс Cŀƭƭ Ωмс

Making data linearly separable

21

f(x) = 1 iff x1
2 + x2

2 Ò 1

SVMs /{ппс Cŀƭƭ Ωмс

Making data linearly separable

22

Transform data: x = (x1, x2) => ȄΩ = (x1
2, x2

2)
f(ȄΩύ Ґ м ƛŦŦ ȄΩ1Ҍ ȄΩ2 Җ м

In order to deal with this, we
introduce two new concepts:

Dual Representation

Kernel (& the kernel trick)

SVMs /{ппс Cŀƭƭ Ωмс 23

(demotion) 1)x (if 1- w w,xbut w 0Class If

)(promotion 1)x (if 1 w w,xwbut 1Class If

iii

iii

=«²¶=

=+«¢¶=

q

q

)xxw(Th f(x)

R w:Hypothesis ;{0,1} x :Examples

n

1i ii

nn

ä=
=

ÍÍ

)(q

Let w be an initial weight vector for perceptron. Let (x1,+), (x2,+), (x3,-), (x4,-) be
examples and assume mistakes are made on x1, x2 and x4.
What is the resulting weight vector?

w = w + x1 + x2 - x4

In general, the weight vector w can be written
as a linear combination of examples:

w = ä1,m r ¬i yi xi
Where¬i is the number of mistakesmade on xi.

Dual Representation

Note: We care about the dot
product: f(x) = w ¢x =

= (ä1,m r¬i yi xi) ¢x
= ä1,m r¬i yi (xi¢x)

SVMs /{ппс Cŀƭƭ Ωмс

Kernel Based Methods

A method to run Perceptron on a very large feature set,
without incurring the cost of keeping a very large weight vector.

Computing the dot product can be done in the original feature
space.

Notice:this pertains only to efficiency: The classifier is identical
to the one you get by blowing up the feature space.

Generalization is still relative to the real dimensionality (or,
related properties).

Kernelswere popularized by SVMs, but many other algorithms
can make use of them (== run in the dual).
Ç Linear Kernels: no kernels; stay in the original space. A lot of applications

actually use linear kernels.

24

äÍ
=

M
 f(x)

z
z))S(z)K(x,(Thq

SVMs /{ппс Cŀƭƭ Ωмс

Implementation

Simply run Perceptron in an on-line mode, but keep
track of the set M.

Keeping the set M allows us to keep track of S(z).

Rather than remembering the weight vector w,
remember the set M (P and D) ςall those examples
on which we made mistakes.

Dual Representation

25

äÍ
=

M
 f(x)

z
z))S(z)K(x,(Thq

)xz)tt z)K(x,
i

iiä
Í

=
I

((

SVMs /{ппс Cŀƭƭ Ωмс

Kernels ςGeneral Conditions

Kernel Trick: You want to work with degree 2 polynomial features, (x).
Then, your dot product will be in a space of dimensionality n(n+1)/2. The
kernel trick allows you to save and compute dot products in an n
dimensional space.

Can we use any K(.,.)?
Ç A function K(x,z) is a valid kernel if it corresponds to an inner product in some

(perhaps infinite dimensional) feature space.

Take the quadratic kernel: k(x,z) = (xTz)2

Example: Direct construction (2 dimensional, for simplicity):

K(x,z) = (x1 z1 + x2 z2)
2 = x1

2 z1
2 +2x1 z1 x2 z2 + x2

2 z2
2

= (x1
2, sqrt{2} x1x2, x2

2) (z1
2, sqrt{2} z1z2, z2

2)

= (x)T (z) Ą A dot product in an expanded space.

It is not necessary to explicitly show the feature function .

General condition: construct the Gram matrix {k(xi ,zj)}; ŎƘŜŎƪ ǘƘŀǘ ƛǘΩǎ

positive semi definite.

26

äÍ
=

M
 f(x)

z
z))S(z)K(x,(Thq

)xz)tt z)K(x,
i

iiä
Í

=
I

((

SVMs /{ппс Cŀƭƭ Ωмс

The Kernel Matrix

The Gram matrix of a set of n vectors S = {x1Χxn} is
the n×n matrix Gwith Gij = xixj

Ç The kernel matrix is the Gram matrix of {˒όx1ύΣ ΧΣ˒(xn)}

Ç (size depends on the # of examples, not dimensionality)

Direct option:
Ç LŦ ȅƻǳ ƘŀǾŜ ǘƘŜ ˒όxiύΣ ȅƻǳ ƘŀǾŜ ǘƘŜ DǊŀƳ ƳŀǘǊƛȄ όŀƴŘ ƛǘΩǎ

easy to see that it will be positive semi-definite)

Indirect:
Ç If you have the Kernel, write down the Kernel matrix Kij, and

show that it is a legitimate kernel, without an explicit
construction of ˒ όxi)

27

SVMs /{ппс Cŀƭƭ Ωмс

Constructing New Kernels

You can construct new kernels ƪΩ(x, ȄΩ) from
existing ones:

Ç Multiplying k(x, ȄΩ) by a constant c:
ƪΩ(x, ȄΩ) = ck(x, ȄΩ)

Ç Multiplying k(x, ȄΩ) by a function f applied to x andȄΩ:
kΩ(x, ȄΩ) = f(x)k(x, ȄΩ)f(ȄΩ)

Ç Applying a polynomial (with non-negative coefficients) to
k(x, ȄΩ):
kΩ(x, ȄΩ) = P(k(x, ȄΩ)) with P(zύ Ґ ңi aiz

i andaiҗ0

Ç Exponentiating k(x, ȄΩ):
kΩ(x, ȄΩ) = exp(k(x, ȄΩ))

29

SVMs /{ппс Cŀƭƭ Ωмс 30

A method to run Perceptron on a very large feature set,
without incurring the cost of keeping a very large weight vector.

Computing the weight vector can be done in the original feature
space.

Notice: this pertains only to efficiency:the classifier is identical
to the one you get by blowing up the feature space.
Generalizationis still relative to the real dimensionality (or,
related properties).
Kernels were popularized by SVMs but apply to a range of
models, Perceptron, Gaussian Models, PCAs, etc.

Summary ςKernel Based Methods

äÍ
=

M
 f(x)

z
z))S(z)K(x,(Thq

SVMs /{ппс Cŀƭƭ Ωмс

Efficiency-Generalization
Tradeoff

There is a tradeoff between the computational
efficiencywith which these kernels can be computed
and the generalization abilityof the classifier.

For example, using such kernels the Perceptron
algorithm can make an exponential number of
mistakes even when learning simple functions.
ώYƘŀǊŘƻƴΣwƻǘƘΣ{ŜǊǾŜŘƛƻΣbLt{Ω01; BenDavidet al.]

In addition,computingwith kernelsdependsstrongly
on the number of examples. It turns out that
sometimesworking in the blown up spaceis more
efficient than usingkernels.ώ/ǳƳōȅΣwƻǘƘΣL/a[Ω03]

31

SVMs /{ппс Cŀƭƭ Ωмс

Explicit & Implicit Kernels:
Complexity

Is it always worthwhile to define kernels and work in
the dual space?

Computationally: [Cumby,Roth2003]

Ç Dual space ςt1 m2 vs, Primal Space ςt2 m

Ç Where m is # of examples, t1, t2 are the sizes of the (Dual,
Primal) feature spaces, respectively.

Ç Typically, t1 << t2, so it boils down to the number of
examples one needs to considerrelative to the growth in
dimensionality.

Rule of thumb: a lot of examples Ą use Primal space

Most applications today: People use explicitkernels. That is,
they blow up the feature space explicitly.

32

SVMs /{ппс Cŀƭƭ Ωмс

Kernels: Generalization

Do we want to use the most expressive kernels we
can?
Ç (e.g., when you want to add quadratic terms, do you really

want to add all of them?)

No; this is equivalent to working in a larger feature
space, and will lead to overfitting.

Here is a simple argument that shows that simply
adding irrelevant features does not help.

33

SVMs /{ппс Cŀƭƭ Ωмс 34

Kernels: Generalization(2)

Given: A linearly separable set of points S={x1ΣΧxn} 2 Rn with
separator w 2 Rn

Embed S into a higher dimensional space ƴΩҔƴ, by adding
zero-mean random noise e to the additional dimensions.

Then ǿΩ ¢x= (w,0) ¢(x,e) = w ¢x

SoǿΩ 2 RnΩstill separates S.

We will now look at ®/||x|| which we have shown to be
inversely proportional to generalization (and mistake bound) ?

gό{Σ ǿΩύκμμȄΩμμ Ґ minS ǿΩ
TȄΩ κ μμǿΩμμ μμȄΩμμ Ґ

minSwTȄ κμμǿμμ μμȄΩμμ ғ gό{Σ ǿΩύκμμx||

Since μμȄΩμμ Ґ μμόx,e)|| > ||x||

The new ratio is larger, which implies generalizationsuffers.

Intuition: adding a lot of noisy/irrelevant features cannot help

SVMs /{ппс Cŀƭƭ Ωмс

Multi-Layer Neural Network

Multi-layer network were designed to overcome the
computational (expressivity) limitation of a single
threshold element.

The idea is to stack several

layers of threshold elements,

each layer using the output of

the previous layer as input.

Multi-layer networks can represent arbitrary
functions, but building effective learning methods
for such network was [thought to be] difficult.

35

activation

Input

Hidden

Output

SVMs /{ппс Cŀƭƭ Ωмс

Basic Units

Linear Unit: Multiple layers of linear functions
oj = w ¢x produce linear functions. We want to
represent nonlinear functions.

Threshold units: oj = sgn(w ¢x)

are not differentiable, hence

unsuitable for gradient descent.

The key idea (Rumelhart, Hinton, Williiam, 1986) was
to notice that the discontinuity of the threshold
element can be represents by a smooth non-linear
approximation: oj = [1+ exp{-w ¢x}]-1

36

activation

Input

Hidden

Output

w2
ij

w1
ij

SVMs /{ппс Cŀƭƭ Ωмс

Learning with a Multi-Layer
Perceptron

LǘΩǎ Ŝŀǎȅ ǘƻ ƭŜŀǊƴ ǘƘŜ ǘƻǇ ƭŀȅŜǊ ςƛǘΩǎ Ƨǳǎǘ ŀ ƭƛƴŜŀǊ ǳƴƛǘΦ

Given feedback (truth) at the top layer, and the activation at the
layer below it, you can use the Perceptron update rule (more
generally, gradient descent) to updated these weights.

The problem is what to do with

the other set of weights ςwe do

not get feedback in the

intermediate layer(s).

37

activation

Input

Hidden

Output

w2
ij

w1
ij

SVMs /{ппс Cŀƭƭ Ωмс

Learning with a Multi-Layer
Perceptron

The problem is what to do with

the other set of weights ςwe do

not get feedback in the

intermediate layer(s).

Solution:If all the activation

functions are differentiable, then

the output of the network is also

a differentiable function of the input and weights in the network.

Define an error function (e.g., sum of squares) that is a differentiable
function of the output, that this error function is also a differentiable
function of the weights.

We can then evaluate the derivatives of the error with respect to the
weights, and use these derivatives to find weight values that minimize this
error function. This can be done, for example, using gradient descent (or
other optimization methods).

This results in an algorithm called back-propagation.

38

activation

Input

Hidden

Output

w2
ij

w1
ij

SVMs /{ппс Cŀƭƭ Ωмс

Computational Learning Theory

What general laws constrain inductive learning ?
Ç What learning problems can be solved ?

Ç When can we trust the output of a learning algorithm ?

We seek theory to relate
Ç Probability of successful Learning

Ç Number of training examples

Ç Complexity of hypothesis space

Ç Accuracy to which target concept is approximated

Ç Manner in which training examples are presented

39

SVMs /{ппс Cŀƭƭ Ωмс

Quantifying Performance

We want to be able to say something rigorous about
the performance of our learning algorithm.

We will concentrate on discussing the number of
examples one needs to seebefore we can say that
our learned hypothesis is good.

40

Recall what we
did earlier:

SVMs /{ппс Cŀƭƭ Ωмс

PAC Learning ςIntuition

41

ωWe have seen many examples (drawn according to D)
ωSince in all the positive examplesx1 was active, it is very likely that it will be

active in future positive examples
ωIf not, in any case, x1 is active only in a small percentage of the

examples so our error will be small

10054321 xxxxxxh ØØØØØ=

f

h

f and h disagree

+
+

-

-

-

h(x)][f(x)Error
DxD Pr ¸=
Í

SVMs /{ппс Cŀƭƭ Ωмс

Formulating Prediction Theory
Instance Space X, Input to the Classifier; Output Space Y = {-1, +1}

Making predictions with: h: X Ą Y

D: An unknown distribution over X Y

S: A set of examples drawn independently from D; m = |S|, size of sample.

Now we can define:

True Error: ErrorD = Pr(x,y) 2 D [h(x) : = y]

Empirical Error: ErrorS= Pr(x,y) 2 S [h(x) : = y] = ä1,m [h(xi) : = yi]

Ç (Empirical Error (Observed Error, or Test/Train error, depending on S))

This will allow us to ask: (1)Can we describe/bound ErrorD given ErrorS ?

Function Space: C ςA set of possible target concepts; target is: f: X Ą Y

Hypothesis Space:H ςA set of possible hypotheses

This will allow us to ask: (2) Is C learnable?

Ç Is it possible to learna given function in Cusing functions in H, given the
supervised protocol?

42

SVMs /{ппс Cŀƭƭ Ωмс

Probably Approximately Correct

Cannot expect a learner to learn a concept exactly.

Cannot always expect to learn a close approximation
to the target concept

Therefore, the only realistic expectation of a good
learner is that with high probability it will learn a
close approximation to the target concept.

In Probably Approximately Correct (PAC)learning,
one requires that given smallparameters eandd,
with probability at least (1-d) a learner produces a
hypothesis witherror at most e

The reason we can hope for that is theConsistent
Distribution assumption.

43

SVMs /{ппс Cŀƭƭ Ωмс

PAC Learnability

Consider a concept class C defined over an instance space X
(containing instances of length n), and a learner Lusing a
hypothesis space H.

Cis PAC learnable by Lusing H if

Ç for all f ÍC,

Ç for all distributions D over X, and fixed 0< e, d< 1,

L, given a collection of m examples sampled independently
according to Dproduces

Ç with probability at least(1-d) a hypothesis h ÍH with error at
most e, (ErrorD= PrD[f(x) : = h(x)])

where m is polynomial in 1/ e, 1/ d, n and size(H)

C is efficiently learnable if Lcan produce the hypothesis in time
polynomial in 1/ e, 1/ d, n and size(H)

44

SVMs /{ппс Cŀƭƭ Ωмс

PAC Learnability

We impose two limitations:

Polynomial sample complexity (information theoretic constraint)

Ç Is there enough information in the sample to distinguish a
hypothesis h that approximate f ?

Polynomial time complexity (computational complexity)

Ç Is there an efficient algorithm that can process the sample and
produce a good hypothesis h ?

To be PAC learnable, there must be a hypothesis h ÍHwith
arbitrary small error for every f ÍC. We generally assume H ÉC.
(Properly PAC learnable if H=C)

Worst Case definition: the algorithm must meet its accuracy

Ç for everydistribution (The distribution free assumption)

Ç for everytarget function f in the class C

45

SVMs /{ппс Cŀƭƭ Ωмс

hŎŎŀƳΩǎ wŀȊƻǊ όмύ
Claim:The probability that there exists a hypothesish ÍHthat

(1) is consistent with mexamples and
(2) satisfies error(h) >e (ErrorD(h) = Prx 2 D [f(x) : =h(x)])

is less than |H|(1-e)m .

e-<=
Í

1)]()([Pr xhxf
Dx

mH)1(|| e-

m)1(e-

Proof: Let h be such a bad hypothesis.

- The probability that h is consistent with one example of f is

- Since the mexamples are drawn independently of each other,

The probability that h is consistent with mexample of f is less than

- The probability that some hypothesis in His consistent with mexamples

is less than
bƻǘŜ ǘƘŀǘ ǿŜ ŘƻƴΩǘ ƴŜŜŘ ŀ ǘǊǳŜ f for
this argument; it can be done with h,
relative to a distribution over X Y.

46

SVMs /{ппс Cŀƭƭ Ωмс

hŎŎŀƳΩǎ wŀȊƻǊ όмύ
We want this probability to be smaller than d, that is:

|H|(1-e) < d

ln(|H|) + m ln(1-e) < ln(d)

(with e-x = 1-x+x2/2+é; e-x > 1-x; ln (1-e) < - e; gives a safer d)

(gross over estimate)

It is called Occamõs razor, because it indicates a preference towards small

hypothesis spaces

What kind of hypothesis spaces do we want ? Large ? Small ?

To guarantee consistency we need H ÉC. But do we want the smallestH possible ?

m

)}/1ln(|){ln(|
1

d
e

+> Hm

We showed that a
m-consistent hypothesis
generalizes well (err<)
(Appropriate m is a
function of |H|, , ̄)

What do we know now
about the Consistent
Learner scheme?

47

SVMs /{ппс Cŀƭƭ Ωмс

Consistent Learners
Immediately from the definition, we get the following general scheme
for PAC learning:

Given a sample D of m examples

Ç Find some h ÍH that is consistent with all m examples

ÁWe showed that if m is large enough, a consistent hypothesis must be close
enough to f

ÁCheck that m is not too large (polynomial in the relevant parameters) : we
ǎƘƻǿŜŘ ǘƘŀǘ ǘƘŜ άŎƭƻǎŜƴŜǎǎέ ƎǳŀǊŀƴǘŜŜ ǊŜǉǳƛǊŜǎ ǘƘŀǘ

m > 1/ (ln |H| + ln 1/)̄

Ç Show that the consistent hypothesis h ÍHcan be computed efficiently

In the case of conjunctions

Ç We used the Elimination algorithm to find a hypothesis h that is consistent
with the training set (easy to compute)

Ç We showed directlythat if we have sufficiently many examples (polynomial
in the parameters), than h is close to the target function.

We did not need to show it directly.
See above.

48

SVMs /{ппс Cŀƭƭ Ωмс

Computational Complexity
Determining whether there is a 2-term DNF consistent
with a set of training data is NP-Hard

Therefore the class of k-term-DNFis not efficiently
(properly) PAC learnable due to computational complexity

We have seen an algorithm for learning k-CNF.

And, k-CNFis a superset of k-term-DNF
Ç (That is, every k-term-DNF can be written as a k-CNF)

Therefore, C=k-term-DNFcan be learned as using H=k-CNF
as the hypothesis Space

Importance of representation:

Ç Concepts that cannot be learned using one representation can
be learned using another (more expressive) representation.

C

H

This result is analogous to an earlier
ƻōǎŜǊǾŀǘƛƻƴ ǘƘŀǘ ƛǘΩǎ ōŜǘǘŜǊ ǘƻ ƭŜŀǊƴ
linear separators than conjunctions.

49

SVMs /{ппс Cŀƭƭ Ωмс

Negative Results ςExamples
Two types of nonlearnability results:

Complexity Theoretic

Ç Showing that various concepts classes cannot be learned, based
on well-accepted assumptions from computational complexity
theory.

Ç E.g. : C cannot be learned unless P=NP

Information Theoretic

Ç The concept class is sufficiently rich that a polynomial number of
examples may not be sufficient to distinguish a particular target
concept.

Ç .ƻǘƘ ǘȅǇŜ ƛƴǾƻƭǾŜ άǊŜǇǊŜǎŜƴǘŀǘƛƻƴ ŘŜǇŜƴŘŜƴǘέ ŀǊƎǳƳŜƴǘǎΦ

Ç The proof shows that a given class cannot be learned by
algorithms using hypotheses from the same class. (So?)

Usually proofs are for EXACT learning, but apply for the
distribution free case.

50

SVMs /{ппс Cŀƭƭ Ωмс

Agnostic Learning
Assume we are trying to learn a concept f using hypotheses
in H, but f ÎH

In this case, our goal should be to find a hypothesis h ÍH,
with a small training error:

We want a guarantee that a hypothesis with a small training
error will have a good accuracy on unseen examples

Hoeffdingbounds characterize the deviation between the
true probability of some event and its observedfrequency
over m independent trials.
Ç (p is the underlying probability of the binary variable (e.g., toss is

Head) being 1)

|)}()(;_{|
1

)(xhxfexamplestrainingx
m

hErrTR ¸Í=

)]()([Pr)(xhxfhErr DxD ¸= Í

22][ee mepp -<+>
$

Pr

SVMs /{ппс Cŀƭƭ Ωмс

Agnostic Learning
Therefore, the probability that an element in H will have training error which is
off by more than ecan be bounded as follows:

Doing the same union bound game as before, with
d=|H|e -2me2

We get a generalization bound ςa bound on how much will the true error ED

deviate from the observed (training) error ETR.

For any distribution Dgenerating training and test instances, with probability at
least 1-dover the choice of the training set of size m, (drawn IID), for all hÍH

m

H
hErrorhError TRD

2

)/1log(||log
)()(

d+
+<

22])()([ee m

TRD ehErrhErr -<+>Pr

SVMs /{ппс Cŀƭƭ Ωмс

Agnostic Learning

An agnostic learner which makes no commitment to
whether f is in Hand returns the hypothesis with least
training error over at least the following number of
examples m can guarantee with probability at least (1-d)
that its training error is not off by more than efrom the
true error.

)}/1ln(|){ln(|
2

1
2

d
e

+> Hm

SVMs /{ппс Cŀƭƭ Ωмс

Infinite Hypothesis Space

The previous analysis was restricted to finite
hypothesis spaces

Some infinite hypothesis spaces are more expressive
than others
Ç E.g., Rectangles, vs. 17- sides convex polygons vs. general

convex polygons

Ç Linear threshold function vs. a conjunction of LTUs

Need a measure of the expressiveness of an infinite
hypothesis space other than its size

The Vapnik-Chervonenkisdimension (VC dimension)
provides such a measure.

Analogous to |H| , there are bounds for sample
complexity using VC(H)

SVMs /{ппс Cŀƭƭ Ωмс

Shattering

55

ÅWe say that a set S of examplesis shatteredby a set of functions Hif

for every partitionof the examples in S into positive and negative examples

there is a functionin H that gives exactly these labels to the examples

(Intuition: A rich set of functions shatters large sets of points)

Left bounded intervals on the real axis:[0,a),for some real number a>0

Sets oftwopoints cannot be shattered

(we mean: given two points, you can label them in such a way that

no concept in this class will be consistent with their labeling)

0 a

+ + + + + --

0 a

+ + + + +

-

-

+

SVMs /{ппс Cŀƭƭ Ωмс

VC Dimension

56

ÅWe say that a set S of examplesis shatteredby a set of functions Hif

for every partitionof the examples in S into positive and negative examples

there is a functionin H that gives exactly these labels to the examples

ÅThe VC dimensionof hypothesis spaceHover instance space X

is the size of the largest finite subset of X that is shattered by H.

ÅIf there existsa subset of size d that can be shattered, then VC(H) >=d

ÅIf no subset of sizedcan be shattered, then VC(H) < d

VC(Half intervals) = 1 (nosubset of size 2can be shattered)

VC(Intervals) = 2 (nosubset of size 3can be shattered)

VC(Half-spaces in the plane) = 3(nosubset of size 4can be shattered)

Even if only one subset of this size does it!

Some are shattered, but some are

not

SVMs /{ппс Cŀƭƭ Ωмс

Sample Complexity & VC Dimension

57

What if H is

finite?

ÅUsing VC(H) as a measure of expressiveness we have an Occam algorithm

for infinite hypothesis spaces.

ÅGiven a sample D of mexamples

Å Find some h ÍH that is consistent with all mexamples

Å If

Å

Å Then with probability at least (1-d),hhas error less than e.

(that is, if mis polynomial we have a PAClearning algorithm;

to be efficient, we need to produce the hypothesis hefficiently.

ÅNotice that to shattermexamples it must be that: |H|>2m, so log(|H|)̧ VC(H)

)}
2

log(4
13

log)(8{
1

dee
+> HVCm

SVMs /{ппс Cŀƭƭ Ωмс

Learning Rectangles

58

ÅConsider axis parallel rectangles in the real plan

ÅCan we PAC learn it ?

(1) What is the VC dimension ?

ÅBut, no five instances can be shattered

There can be at most 4 distinct

extreme points (smallest or largest

along some dimension) and these

cannot be included (labeled +)

without including the 5th point.

Therefore VC(H) = 4

As far as sample complexity, this guarantees PAC learnabilty.

SVMs /{ппс Cŀƭƭ Ωмс

Sample Complexity Lower Bound

59

ÅThere is also a general lower bound on the minimum number of examples

necessary for PAC leaning in the general case.

ÅConsider any concept class Csuch that VC(C)>2,

any learnerLand small enough e, d.

Then, there exists a distribution D and a target function in C such that

if L observes less than

examples, then with probability at least d,

L outputs a hypothesis having error(h) > e.

Ignoring constant factors, the lower bound is the same as the upper bound,

except for the extra log(1/e) factor in the upper bound.

]
32

1)(
),

1
log(

1
max[

ede

-
=

CVC
m

SVMs /{ппс Cŀƭƭ Ωмс

Boosting

Boosting is (today) a general learning paradigm for putting
together a Strong Learner, given a collection (possibly
infinite) of Weak Learners.

The original Boosting Algorithm was proposed as an answer
to a theoretical question in PAC learning. [The Strength of Weak
Learnability; Schapire, 89]

Consequently, Boosting has interesting theoretical
implications, e.g., on the relations between PAC learnability
and compression.
Ç If a concept class is efficiently PAC learnable then it is efficiently PAC

learnable by an algorithm whose required memory is bounded by a
polynomial in n, size c and log(1/e).

Ç There is no concept class for which efficient PAC learnability requires
that the entire sample be contained in memory at one time ςthere is
ŀƭǿŀȅǎ ŀƴƻǘƘŜǊ ŀƭƎƻǊƛǘƘƳ ǘƘŀǘ άŦƻǊƎŜǘǎέ Ƴƻǎǘ ƻŦ ǘƘŜ ǎŀƳǇƭŜΦ

60

SVMs /{ппс Cŀƭƭ Ωмс

The Boosting Approach

Algorithm
Ç Select a small subset of examples

Ç Derive a rough rule of thumb

Ç Examine 2nd set of examples

Ç Derive 2nd rule of thumb

Ç Repeat T times

Ç Combine the learned rules into a single hypothesis

Questions:
Ç How to choose subsets of examples to examine on each round?

Ç How to combine all the rules of thumb into single prediction rule?

Boosting
Ç General method of converting rough rules of thumb into highly

accurate prediction rule

61

SVMs /{ппс Cŀƭƭ Ωмс

A Formal View of Boosting

Given training set (x1, y1ύΣ Χ όxm, ym)

yi 2 {-1, +1} is the correct label of instance xi 2 X

CƻǊ ǘ Ґ мΣ ΧΣ ¢
Ç Construct a distributionDtƻƴ ϑмΣΧƳϒ

Ç Find weak hypothesis όάǊǳƭŜ ƻŦ ǘƘǳƳōέύ

ht : X ! {-1, +1}

with small error t on Dt:

t = PrD [ht (xi) : = yi]

Output: final hypothesis Hfinal

62

SVMs /{ппс Cŀƭƭ Ωмс

Adaboost

Constructing Dtƻƴ ϑмΣΧƳ}:

Ç D1(i) = 1/m

Ç Given Dt and ht :

Ç Dt+1 = Dt(i)/zt e-¬t if yi = ht(xi)

Dt(i)/zt e+¬t if yi : = ht (xi)

= Dt(i)/zt exp(-¬t yi ht (xi))

where zt = normalization constant

and

¬t = ½ ln{ (1 - tʁ)/ tʁ }

Final hypothesis: Hfinal (x) = sign (ät ¬t ht(x))

63

< 1; smaller weight

> 1; larger weight

Notes about ¬t:
Ç Positive due to the weak learning

assumption
Ç Examples that we predicted correctlyare

demoted, others promoted
Ç Sensible weighting scheme: better

hypothesis (smaller error) Ą larger weight

Think about unwrapping it all
the way to 1/m

e+¬t = sqrt{(1 - t)/t }>1

SVMs /{ппс Cŀƭƭ Ωмс

A Toy Example

64

SVMs /{ппс Cŀƭƭ Ωмс

A Toy Example

65

SVMs /{ппс Cŀƭƭ Ωмс

A Toy Example

66

SVMs /{ппс Cŀƭƭ Ωмс

A Toy Example

67

SVMs /{ппс Cŀƭƭ Ωмс

A Toy Example

68

A cool and important note
about the final hypothesis:
it is possible that the
combined hypothesis makes
no mistakes on the training
data, but boosting can still
learn, by adding more weak
hypotheses.

SVMs /{ппс Cŀƭƭ Ωмс

Summary of Ensemble Methods

Boosting

Bagging

Random Forests

69

SVMs /{ппс Cŀƭƭ Ωмс

Boosting
Initialization:

ÇWeigh all training samples equally

Iteration Step:

Ç Train model on (weighted) train set

ÇCompute error of model on train set

Ç Increase weights on training cases model gets wrong!!!

¢ȅǇƛŎŀƭƭȅ ǊŜǉǳƛǊŜǎ мллΩǎ ǘƻ млллΩǎ ƻŦ ƛǘŜǊŀǘƛƻƴǎ

Return final model:

ÇCarefully weighted prediction of each model

70

SVMs /{ппс Cŀƭƭ Ωмс

Bagging
Bagging predictors is a method for generating multiple versions of a
predictor and using these to get an aggregated predictor.

The aggregation averages over the versions when predicting a numerical
outcome and does a plurality vote when predicting a class.

The multiple versions are formed by making bootstrap replicates of the
learning set and using these as new learning sets.
Ç That is, use samples of the data, with repetition

Tests on real and simulated data sets using classification and regression
trees and subset selection in linear regression show that bagging can give
substantial gains in accuracy.

The vital element is the instability of the prediction method. If perturbing
the learning set can cause significant changes in the predictor constructed
then bagging can improve accuracy.

71

SVMs /{ппс Cŀƭƭ Ωмс

Example: Bagged Decision Trees
Draw 100 bootstrap samples of data

Train trees on each sample Ą 100 trees

Average prediction of trees on out-of-bag samples

72

é

Average prediction

(0.23 + 0.19 + 0.34 + 0.22 + 0.26 + é + 0.31) / # Trees = 0.24

SVMs /{ппс Cŀƭƭ Ωмс

Random Forests (Bagged Trees++)

Draw 1000+bootstrap samples of data

Draw sample of available attributes at each split

Train trees on each sample/attribute set Ą 1000+trees

Average prediction of trees on out-of-bag samples

73

é

Average prediction

(0.23 + 0.19 + 0.34 + 0.22 + 0.26 + é + 0.31) / # Trees = 0.24

SVMs /{ппс Cŀƭƭ Ωмс

Classification

So far we focused on Binary Classification

For linear models:
Ç Perceptron, Winnow, SVM, GD, SGD

The prediction is simple:
Ç Given an examplex,

Ç Prediction = sgn(wTx)

Ç Where w is the learned model

The outputis a single bit

74

SVMs /{ппс Cŀƭƭ Ωмс

Multi-Categorical Output Tasks

Multi-class Classification (y Í{1,...,K})
Ç ŎƘŀǊŀŎǘŜǊ ǊŜŎƻƎƴƛǘƛƻƴ όΨсΩύ

Ç ŘƻŎǳƳŜƴǘ ŎƭŀǎǎƛŦƛŎŀǘƛƻƴ όΨƘƻƳŜǇŀƎŜΩύ

Multi-label Classification (y Ì{1,...,K})
Ç ŘƻŎǳƳŜƴǘ ŎƭŀǎǎƛŦƛŎŀǘƛƻƴ όΨόƘƻƳŜǇŀƎŜΣŦŀŎǳƭǘȅǇŀƎŜύΩύ

Category Ranking (y ÍpK)
Ç ǳǎŜǊ ǇǊŜŦŜǊŜƴŎŜ όΨόƭƻǾŜ Ҕ ƭƛƪŜ Ҕ ƘŀǘŜύΩύ

Ç ŘƻŎǳƳŜƴǘ ŎƭŀǎǎƛŦƛŎŀǘƛƻƴ όΨƘƻƳǇŀƎŜ Ҕ ŦŀŎǳƭǘȅǇŀƎŜ Ҕ ǎǇƻǊǘǎΩύ

Hierarchical Classification (y Ì{1,..,K})
Ç cohere with class hierarchy

Ç ǇƭŀŎŜ ŘƻŎǳƳŜƴǘ ƛƴǘƻ ƛƴŘŜȄ ǿƘŜǊŜ ΨǎƻŎŎŜǊΩ ƛǎ-ŀ ΨǎǇƻǊǘΩ

SVMs /{ппс Cŀƭƭ Ωмс

Setting

Learning:
Ç Given a data set D = {(xi , yi)}1

m

Ç Where xi 2 Rn, yi 2 ϑмΣнΣΧΣƪϒΦ

Prediction (inference):
Ç Given an example x, and a learned function (model),

Ç Output a single class labels y.

76

SVMs /{ппс Cŀƭƭ Ωмс

Binary to Multiclass

Most schemes for multiclass classification work by
reducing the problem to that of binary classification.

The are multiple ways to decompose the multiclass
prediction into multiple binary decisions
Ç One-vs-all

Ç All-vs-all

Ç Error correcting codes

We will then talk about a more general scheme:
Ç Constraint Classification

It can be used to model other non-binary
classification and leads to Structured Prediction.

77

SVMs /{ппс Cŀƭƭ Ωмс

One-Vs-All

Assumption: Each class can be separated from all the
restusing a binary classifier in the hypothesis space.

Learning: Decomposed to learning k independent
binary classifiers, one for each class label.

Learning:
Ç Let Dbe the set of training examples.

Ç 8 label l, construct a binary classification problem as follows:

ÁPositive examples: Elements of D with label l

ÁNegative examples: All other elements of D

Ç This is a binary learning problem that we can solve, producing
k binary classifiers w1, w2Σ Χwk

Decision: Winner Takes All (WTA):
Ç f(x) = argmaxi wi

Tx

SVMs /{ппс Cŀƭƭ Ωмс

Solving MultiClasswith 1vs All
learning

MultiClassclassifier

Ç Function f : Rn
Ą {1,2,3,...,k}

Decompose into binary problems

Not always possible to learn

No theoretical justification
Ç Need to make sure the range of all classifiers is the same

(unless the problem is easy)

SVMs /{ппс Cŀƭƭ Ωмс

Learning via One-Versus-All (OvA) Assumption

Find vr,vb,vg,vyÍRn such that
Ç vr.x> 0 iff y = red Ã

Ç vb.x> 0 iff y = blue Õ

Ç vg.x> 0 iff y = green Õ

Ç vy.x> 0 iff y = yellow Õ

Classification: f(x)= argmaxi vi x

H = Rnk

Real Problem

SVMs /{ппс Cŀƭƭ Ωмс

All-Vs-All

Assumption: There is a separation between every pair of classes
using a binary classifier in the hypothesis space.

Learning:Decomposed to learning [k choose 2] ~ k2

independent binary classifiers, one corresponding to each pair
of class labels. For the pair (i, j):

Ç Positive example: all exampelswith label i

Ç Negative examples: all examples with label j

Decision: More involved, since output of binary classifier may
not cohere. Each label gets k-1 votes.

Decision Options:

Ç Majority: classify example x to take label i if i wins on x more often
than j όƧҐмΣΧƪύ

Ç A tournament: start with n/2 pairs; continue with winners .

SVMs /{ппс Cŀƭƭ Ωмс

Learning via All-Verses-All (AvA) Assumption

Find vrb,vrg,vry,vbg,vby,vgyÍRd such that

Ç vrb.x> 0 if y = red
< 0 if y = blue

Ç vrg.x> 0 if y = red
< 0 if y = green

Ç ... (for all pairs)

Individual

Classifiers

Decision

Regions

H = Rkkn

How to

classify?

It is possible to
separate all k classes
with the O(k2)
classifiers

SVMs /{ппс Cŀƭƭ Ωмс

Classifying with AvA

Tournament

1 red, 2 yellow, 2 green
Č ?

Majority Vote

All are post-learning and mightcause weird stuff

SVMs /{ппс Cŀƭƭ Ωмс

One-vs-All vs.All vs. All

Assume m examples, k class labels.

Ç For simplicity, say, m/k in each.

One vs. All:

Ç classifier fi: m/k (+)and (k-1)m/k (-)

Ç Decision:

Ç Evaluate k linear classifiers and do Winner Takes All (WTA):

Ç f(x) = argmaxi fi(x) = argmaxi wi
Tx

All vs. All:

Ç Classifier fij: m/k (+) and m/k (-)

Ç More expressivity, but less examples to learn from.

Ç Decision:

Ç Evaluate k2 linear classifiers; decision sometimes unstable.

What type of learning methods would prefer All vs. All
(efficiency-wise)? (Think about Dual/Primal)

SVMs /{ппс Cŀƭƭ Ωмс

Problems with Decompositions
Learning optimizes over localmetrics
Ç Does not guarantee good globalperformance

Ç We ŘƻƴΩǘ ŎŀǊŜ ŀōƻǳǘ ǘƘŜ ǇŜǊŦƻǊƳŀƴŎŜ ƻŦ ǘƘŜ localclassifiers

Poor decomposition Ý poor performance
Ç Difficult local problems

Ç Irrelevant local problems

Especially true for Error Correcting Output Codes
Ç Another (class of) decomposition

Ç Difficulty: how to make sure that the resulting problems are separable.

Efficiency: e.g., All vs. All vs. One vs. All

Former has advantage when working with the dual space.

Not clear how to generalize multi-class to problems with a very large # of
output.

SVMs /{ппс Cŀƭƭ Ωмс

wŜŎŀƭƭΥ ²ƛƴƴƻǿΩǎ 9ȄǘŜƴǎƛƻƴǎ

Winnow learns monotone Boolean functions

We extended to general Boolean functions via

ά.ŀƭŀƴŎŜŘ ²ƛƴƴƻǿέ
Ç 2 weights per variable;

Ç Decision:ǳǎƛƴƎ ǘƘŜ άŜŦŦŜŎǘƛǾŜ ǿŜƛƎƘǘέΣ

the difference between w+ and w-

Ç This is equivalent to the Winner take all decision

Ç Learning: In principle, it is possible to use the 1-vs-all rule and update each set
of n weights separatelyΣ ōǳǘ ǿŜ ǎǳƎƎŜǎǘŜŘ ǘƘŜ άōŀƭŀƴŎŜŘέ ¦ǇŘŀǘŜ ǊǳƭŜ ǘƘŀǘ
takes into account how both sets of n weights predict on example x

If [(w
+-w

-)¶x²q] y̧, wi

+«wi

+r yxi , wi

-«wi

-r-yxi

Positive

w+

Negative
w-

Can this be generalized to the case of k
labels, k >2? ²Ŝ ƴŜŜŘ ŀ άƎƭƻōŀƭέ

learning approach

SVMs /{ппс Cŀƭƭ Ωмс

Extending Balanced

In a 1-vs-all training you have a target node that represents
positiveexamples and target node that represents negative
examples.

Typically, we train each node separately (mine/not-mine
example).

Rather, given an example we could say: this is more a + example
than a ςexample.

We compared the activation of the different target nodes
(classifiers) on a given example. (This example is more class+
than class-)

Can this be generalized to the case of k labels, k >2?

If [(w
+-w

-)¶x²q] y̧, wi

+«wi

+r yxi , wi

-«wi

-r-yxi

SVMs /{ппс Cŀƭƭ Ωмс

Recall: Margin for binary classifiers

The marginof a hyperplanefor a dataset is the
distance between the hyperplaneand the data point
nearest to it.

88

+

+
+
+

++
+
+

-

-
-

-

-

-
-

-
-

-

-

-
-

-
-

-

-

-
Margin with respect to this hyperplane

SVMs /{ппс Cŀƭƭ Ωмс

Multiclass Margin

89

SVMs /{ппс Cŀƭƭ Ωмс

Multiclass SVM (Intuition)

Recall: Binary SVM
Ç Maximize margin

Ç Equivalently,

Minimize norm of weights such that the closest points to the
hyperplanehave a score 1

Multiclass SVM
Ç Each label has a different weight vector (like one-vs-all)

Ç Maximize multiclass margin

Ç Equivalently,

Minimize total norm of the weights such that the true label is
scored at least 1 more than the second best one

90

SVMs /{ппс Cŀƭƭ Ωмс

Multiclass SVM in the separable case

91

Recall hard binary SVM

The score for the true label is higher than the score
for any other label by 1

Size of the weights. Effectively,
regularizer

SVMs /{ппс Cŀƭƭ Ωмс

Multiclass SVM: General case

92

The score for the true label is higher than the score
for any other label by
1 -¹i

Size of the weights. Effectively,
regularizer

Slack variables. Not all
examples need to satisfy the

margin constraint.

¢ƻǘŀƭ ǎƭŀŎƪΦ 9ŦŦŜŎǘƛǾŜƭȅΣ ŘƻƴΩǘ
allow too many examples to
violate the margin constraint

Slack variables can only be
positive

SVMs /{ппс Cŀƭƭ Ωмс

Multiclass SVM: Summary

Training:
Ç hǇǘƛƳƛȊŜ ǘƘŜ άƎƭƻōŀƭέ {±a ƻōƧŜŎǘƛǾŜ

Prediction:
Ç Winner takes all

argmaxi wi
Tx

With K labels and inputs in < n, we have nKweights in all
Ç Same as one-vs-all

Why does it work?
Ç ²Ƙȅ ƛǎ ǘƘƛǎ ǘƘŜ άǊƛƎƘǘέ ŘŜŦƛƴƛǘƛƻƴ ƻŦ ƳǳƭǘƛŎƭŀǎǎ ƳŀǊƎƛƴΚ

A theoretical justification, along with extensions to other algorithms
ōŜȅƻƴŘ {±a ƛǎ ƎƛǾŜƴ ōȅ ά/ƻƴǎǘǊŀƛƴǘ /ƭŀǎǎƛŦƛŎŀǘƛƻƴέ
Ç Applies also to multi-label problems, ranking problems, etc.
Ç [DavZimak; with D. Roth and S. Har-Peled]

93

SVMs /{ппс Cŀƭƭ Ωмс 94

SVMs /{ппс Cŀƭƭ Ωмс 95

SVMs /{ппс Cŀƭƭ Ωмс 96

SVMs /{ппс Cŀƭƭ Ωмс

Details: KeslerConstruction &
Multi-Class Separability

Transform Examples

2>1

2>3

2>4

2>1

2>3

i>j f i(x) - f j(x) > 0

wiÖx - wjÖx > 0

W ÖX i - W ÖX j > 0

W Ö(X i - X j) > 0

W ÖX ij > 0

X i = (0,x,0,0) ÍRkd

X j = (0,0,0,x) ÍRkd

X ij = X i - X j = (0,x,0,-x)

W = (w1,w2,w3,w4) ÍRkd

2>4

If (x,i) was a given n-dimensional
example (that is, x has is labeled i,
then

xij, 8ƧҐмΣΧƪΣ j: = i, are positive
examples in the nk-dimensional
space. ςxij are negative examples.

SVMs /{ппс Cŀƭƭ Ωмс

Learning via YŜǎƭŜǊΩǎConstruction
Given (x1, y1), ..., (xN, yN) ÍRn x {1,...,k}

Create
Ç P+ = ÇP+(xi,yi)

Ç Pς= ÇPς(xi,yi)

Find w = (w1, ..., wk) ÍRkn, such that
Ç w.x separates P+ from Pς

One can use any algorithm in this space: Perceptron, Winnow, SVM, etc.

To understand how to update the weight vector in the n-dimensional
space, we note that

wT¢xyyΩ̧ 0 (in the nk-dimensional space)

is equivalent to:

(wy
TςwȅΩ

T) ¢x ̧ 0 (in the n-dimensional space)

SVMs /{ппс Cŀƭƭ Ωмс 99

