SVMs

wNot the most general setting
for on-line learning.

] wNot the most general metric
Model: w(Regret: cumulative loss;

¢ Instancespace: X (dimensionalityn) | Competitive analysis)
c Target f: X- {0,1}, fl C, conceptlass (parameterizedy n)
= Protocol

c learneris giverxi X
¢ learnerpredicts h(x), and is then given f(x) (feedback)

» Performancelearner makes a mistake when h({xf(x)

¢ numberof mistakes algorithm A makes on sequenad S
examples for the target function f.

M A(C) =max ;. s MA(T,5)

m Ais a mistake bound algorithm for the concept class C
If MA(c) isa polynomialn n, the complexity parameter

of the target concept.
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SVMs

Assume that you want to learn conjunctions. Should your hypoth
space be the class of conjunctions?

¢ Theorem Given a sample on n attributes that is consisterth a conjunctive
concept, it is Nfhard to find apure conjunctivehypothesis that is both

consistent with thesampleand has the minimum number aeftributes.
c ®W5F@AR | I dzad aft S NIhductiveBRsAW &ariaguAtizbrifhiisiamddliang'sBearningC NI Y'S ¢ 2 NJ|

Sameholds forDisjunctions

Intuition: Reduction to minimum set cover problem.

¢ Givena collection of sets that cover X, define a set of examplethat
learning the bes{dis/conj)junctionimplies a minimal cover

Consequentlywe cannot learn the concept efficienthga
(dis/con)junction.

But, we will see that we can do that, if we are willinggarn the
concept as a Linear Threshold function

In a more expressive class, the search for a good hypothesis
sometimes becomes combinatorially easier.
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£ (x)= 1 If WA X1 W\ X2 +. . WhXn>=(
(X)_ O Otherwise

= Disjunctionsy= X1 Xs wXs
y: Q(1+]l% 1 Xe>= 1)

m At least m of niy = at least 2 oKy, Xa, Xs}
Y= X+ 1 1 X>=2)

V1
V1

SVMs

m ExclusiveOR: Y= L Xov) kL X2)

= Nortrivial DNF Y= kL Xo) v (XL Xa)
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» We learn f:X {-1,+1} representedas f=sgr{wix)
» WhereX={0,1P or >R andw R
» Given Labeled example&x, v1), (%, y,0 2xX% ¢.)}

1. Initialize w=0 R"
& 2. Cycle through all examples
ég? a. Predict the label of instance x to ®8eQsgr{w{x)
b. Ife . § updatethe weight vector:
w=w+ryx (r-aconstant, learning rate)
hiKSNBAASSE AT eQreées ff
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SVMs

PerceptronConvergence Theorem:

If there exist a set of weights that are consistent with
the data (i.e, the data is linearly separab)e¢he
perceptronlearning algorithnwill converge

¢ Howlong would it take to converge

PerceptronCycling Theorem:

If the training data is nolinearly separable the
perceptron learning algorithm will eventually repeat
the same set of weights and therefore enter an
Infinite loop.

¢ Howto provide robustness, more expressivity ?
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SVMs

Maintains a weight vectowl RN, w,=0 n = XZ n 0 @
Upon receiving an examplel R\

= Predicts according to the linear threshold function
4 WEO.

m Theorem[Novikoff,1963]Let(x;; y,0 & X%.2V.Y, be@
sequence of labeled examples with <N, | x| Rahd

| {-1,1} for alliLetul <N, g> 0 be such that,
|| ul| =1 and y. uwx ? gfor alli. Complexity Parameter

Then Perceptron makes most R/ g2 mistakes on
this example sequence

(see additional notes)
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SVMs

m In the case of noiseparable datathe extent to whicha data
point fails to havanargin®via thehyperplanew can be
guantified by a slack variable

1= max(O®b y, wex;).

m Observethat when?; = 0 the examplex, has margin at leas®
Otherwise, it grows linearly withy, wéx;

= Denote:D, = [a {*3}]*2 4

m Theorem:Theperceptron is
guaranteedo make no mordhan
((R+D)/®? mistakeson any sequende

of examplessatisfying [|x|| <R
m Perceptronis expectedo

have someobustness to noise =
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Initialize:g=n; w, =1

Prediction is 1 iff w9{x2qg

If no mistake:do nothing

If f(x)=1 but wix<g, w,« 2w, (if x, =1) (promotion)
If f(x)=0 but wix2g¢qg, w,« w/2 (if x,=1)(demotion)

» TheWinnow Algorithm learns Linear Threshold
Functions.

m Forthe class oflisjunctions:
¢ Insteadof demotionwe can useslimination

SVMs [ {nnc ClItft Qwmc 8



» Claim Winnow makes O(k log n) mistakes en k
disjunctions

Initialize :qg =n; w, =1
Prediction is 1 iff

If no mistake : do nothing
If f(x) =1 but wix<gqg ,
If f(x) =0 but w fx2gqg ,

wx?2 qg

w, « 2w, (if x, =1) (promotion)
w, « w.,/2 (if x, =1)(demotion)

= U -# of mistakes on positive examples (promotions)
u_V-# of mistakes on negative examples (demotjons

SVMs

1. u<klog(2n)

Aweight that corresponds to a good variable is gmgmoted.
Whenthese weights get to there willbe nomore mistakes on

positives.

[ {nnc
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m  AnAveraged PerceptroAlgorithm is motivatedy the following
considerations

¢ EveryMistakeBound Algorithm can be convertefficiently toa PAC
algorithmc¢ to yieldglobal guaranteeen performance.

¢ Inthe mistake bounanodel:
A WeR2y QiU 1y26 o6KSymstakes. 6Aff YIS GKS
¢ Inthe PAGnodel:

A Dependence is onumber of examples seeandnot numberof mistakes
A Whichhypothesiswill you choosX K K
A Being consistent with more examples is better

ngb $ m Toconvert a given Mistake Bound algorithimo a global guarantee algorithm):
Q@ @Q’é ¢ Waitfor a long stretch w/o mistakes (there must be one)
v"qeé' ¢ Usethe hypothesis at the end of this stretch.

¢ ItsPAC behavior is relative to the length of the stretch.

m AveragedPerceptronreturns a weighted average of a number o

earlierhypothesesthe weights are a function of the length ofn
mistakes stretch.

SVMs [ {nnc ClItt Qwmc 10



SVMs

w Training:
[m: #(examples)k: #(mistakes) = #(hypotheses); consistency count foy, |

Input: a labeled training set {{xy,0 2xX, ¥..)}
Number of epochs T
Output: a list of weightedperceptronsi(v,, c,0 = %, B)$
Initialize: k=0; y=0,¢=0
Repeat T times:
c Fori=m Z XYY
c/ 2YLziS LINBR%x)A2Yy &Q I aArdysd
cLT &Q ¢=cgl 0KSY
else:y, =V, +ty. X; G ,=1; k=k+1
Prediction:
Given:alist of weightedperceptrons{(v,, 0 Zv¥ @)} ;a new example x
Predicithe label(x) as follows:

y(X)= sign@, , G sign(y¢x) ]
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SVMs

m Thick Separator (aka as Perceptron with Margin)
(Applies both for Perge&tg)(()gqand Winnow)

m Promote If:
C WX-Qq<g
m Demote If:

C WXx-q>g wex=0

Note: gis a functional margin. Its effect could disappear as w grows.
Nevertheless, this has been shown to be a very effective algorithmic addi

tiC

(Grove & Roth 98,0Karovet. al 97)
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SVMs

m Thisalgorithm learns monotone functions

»m Forthe general case:

¢ Duplicate variableédown side?)
¢ Forthe negation of variable X, introduce a new variable y.

¢ Learnmonotone functions over 2n variables

» Balancedrersion
¢ Keep two weights for each variable; effective weight is the

difference
UpdateRule :

fFO)=1 but (W - w)TIxEq, W « 2w W « %w wherex =1 (promotion)

If f(x)=0but (W -w)fx2qg, W « %wi* W « 2w wherex. =1(demotion)

c2SQft O02YS olFO1 02 GKA&a ARS

[ {nnc ClItft Qwmc 13



» Modeling:

c | R @S Niuh:mayehange the target concepy adding
or removingsome variable from the target disjunction.
A Costof each addition move is.

SVMs

c [ S NioS:makes prediction on the examples given, and
IS thentold the correct answer (according to current target
function)

¢ WinnowRY {FYS | a 2Ayy2¢63> 2yt e
below 1/2

¢ Claim WinnowR makes O(c log n) mistakes; ¢ost of
adversary (generalization of previous claim)
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SVMs

Given example&=(,y)}, ,from a distribution oveXy, we are
trying to learn a linear unctlon parameterized by a weight veato
sothat we minimize the expectedsk function

Jw) =& QW) ~=~ 1/ma, , Q, w)
In Stochastic Gradient Descent Algorithms we approximate this
minimization by incrementally updating the weight vector w as
follows:

Wi =W, G Iy G, Q@ Wy) =W, G Ty G
Whereg_t=g, Q&, w,) is the gradient with respect to at timet.

The difference between algorithms now amounts to choosing a
different loss functiorQ(z w)

[ {nnc ClItft Qwmc 15



SVMs

Wi =W, G 1 6, Q@, Wy) =W, G 1, G,

LMS:Q((X, y)w) =172 (y ¢ W ¢X)
leads to the update rule (Also calledA R NRAdalDE:
Wipg =W, + 1 QW EX) %
Here, even though we make binary predictions basegign (w¢x)
we do not take thesignof the dotproduct into account in the loss.

“E(Z)

Another common loss function is:
Hinge loss:

Q((X, y)w) =max(0, 1-y w ¢x)
This leads to th@erceptronupdate rule:

w EX

-2 -1 0 | 2

Ify;w; ¢x > 1 (No mistake, by a margin): No update
Otherwise  (Mistake, relative to marghn W, =W, +rVY, X

[ {nnc ClItft Qwmc 16



SVMs

Wi =W, G 1 6, Q@, Wy) =W, G 1, G,

(notice that this is a vector, each coordinate (feature) has its wy}jrandgt j)

So far, we used fixed learning ratesr,, but this can change.

AdaGracaaltersthe update to adapt based on historical informatior
so that frequently occurrinfeatures inthe gradients get small
Iearnlng rates and mfrequent features get hlgher ones.

¢f,<S ARSI A a FTINR Yo { TONBAYdzSiyipa®y 6T Sl ¢
u )/u)\zya G2 NI NB odzi Ay T2N)

0S
éT)\y I G LISNJ FSI (dzNBjéas:t S| Ny 2
rej = 1G>

whereG; =&,- ; &% the sum of squares of gradients at featyre
until timet.

Overall, the update rule fohdagrads:
Wipq ) =W - G I1(G )2

This algorithm is supposed to update weights faster than Percep
or LMS when needed.

[ {nnc ClItt Qwmc 17



SVMs

The more general formalism addsegularizationterm to the risk
function, and attempts to minimize:

. Jw) =, 1, Qg W) +TT R (w;) .
2 KSNBE w A& dzaSR (2 SyFT2NDS a4z

LMS caseQ((x, yyw) =(yc w ¢x)

¢ R(w) 94 w] %gives the optimization problem called Ridge Regression.
¢ R(w) q w] , gives a problem called the LASSO problem

Hinge Loss cas&)((X, y)w) =max(0, 1- y w ¢X)
¢ R(w) 94 w] 2, gives theproblemcalledSupport Vector Machines

Logistics Loss cas@((x,y),w) = log(1l+expfy wex})

¢ R(W =] w] 3 givesthe problem called.ogistics Regression

These are convex optimization problems and, in principle, the same gra
descent mechanism can be used in all cases.
2 S gAaft asSSsS tIFr0SNIgKe A0 YI{1Sa 3
OZ2YUNRE GaqaAYLIX AOAUEED
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SVMs

» Dominated by the sparseness of the function space
¢ Most features ardarrelevant

m # of examples required by multiplicatiaégorithms
dependsmostly on # of relevarfeatures

¢ (Generalization bundsdepend onthe target ||u|| )

m # of examples required by additiagoirithmsdepends
heavily on sparsenesd features space:

¢ Advantagdao additive. Generalization depend oput ||x||
A (KivinedWarmuth 95).

[ {nnc ClItft Qwmc 19



m Generalization

The | norm: ||x|| = &;|x] The,Inorm: |[x} =(& {"[x;[?)?

1/p

Thel, norm: ||x} = (a 1“|xi|P) The || norm: [|x}] = maxi|xi|

¢ Multiplicative algorithms:
A Bounds depend ofju||, the separatindiyperplane i: example #)
A M, =2In n [Julf max||xD|}, 2/min(u ¢xM)2
A Do not care much about data; advantagih sparsetarget u

¢ Additive algorithms:
A Bounds depend ofjx|| (Kivinen/ Warmuth, ®5)
A M, = [|ub? max|xO|/min(u ¢x0)2
A Advantage with few active features per example

SVMs [ {nnc ClItt Qwmc 20



Original feature space

%&%%ﬁ% ive,

-2 -1.5 -1 -05 O 05 1 15 2
x1

f(x) = 1iff X2+ x,2 O 1
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In order to deal with this, we
introduce two new concepts:

m Dual Representation

Transformed feature space

* * ¥ X
x % X * *x x

0 *x & Kok, x X % x x x);:** x
m  Kernel (& the kernel trick) | 5, % % I
S T TV *
x * X ox £ * *
% *x xx’f‘mx . *
KK Ry s B x x keX Y
XK xRy Hoox X ——
X %k #* x % X
N x @iiﬁ"’i@‘ e K x )%K 5 :; )
QA * KX Kox ¥ * *
X F T Mk ax RE xR ¥
% ** " ) * ¥ #* *xx ¥
KRy % ¥ ¥ &*X % *J ¥ « X « ¥
- A **ﬁ BT KRR « ¥ R Wx
o n B e B g o Kk XX o m g
X ¥ Kox ux ¥ X * *
X X %&%2 Xx*% ;: « %Kx%***
3 %
X%XW% XX >><§< !,; 3 *Mi* % %‘)@% x%** 1“
A8 X8I o & ¥

x1*x1

0.5 1 1.5 2

Transform datax =(x;, %) =>|:§ (X,% %°)

fEQ I' v ABRF ™M EQ
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Examples : x| {0,1}"; Hypothesis:wi R"
f(x) = Th, (& _, WX, (X))

If Class=1 but wfx¢qg , w, « w,

If Class =0 but wix?2qg, w,« w,-

+1 (if x, =1) (promotion)
1 (if x, =1) (demotion)

m Letw be an initial weight vector for perceptron. Let (), (X,+), (%,-), (¢,-) be
examples and assume mistakes are madelor and x*.

» What is the resulting weight vector?
W =W +xt +x2- x4

m In general, the weight vector w can be writte

Note: We care about the dot
product: f(x) = wtx =
= @1m Y %) eX
=a 1Y (%)

as a linear combination of examples:
W=ayml 7 ¥iX

m  Where—, is thenumber of mistakesnade on x

SVMs [ {nnc
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SVMs

fX) =Th,(@ ,,, S(@)K(x,2))

A method to run Perceptron on a very large feature set,
without incurring the cost of keeping a very large weight vector.

Computing thedot product can belone in the original feature
space.

Notice:this pertains only to efficiency: The classifier is identical
to the one you get by blowing up the feature space.

Generalization is still relative to the real dimensionality (or,
related properties).

Kernelswere popularized bvVMs, but many other algorithms
can make use of them (== run in the dual).

¢ Linear Kernels: no kernels; stay in the original space. A lot of applications
actually use linear kernels.
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SVMs

f¥) =Th,(@ ,, S(@)K(x,2))

Kx,z)=a t;(2)t(x)
Simply run Perceptron in an dime mode, but keep
track of the setV..

Keeping the set/l allowsus tokeep track of>(2.

Rather than remembering the weight vector
remember the set MP and Dg all those examples
on which we made mistakes

DualRepresentation

[ {nnc ClItft Qwmc 25
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SVMs

2 -15 -1 -05 0 05

Kernel TrickYouwant to work with degree 2 polynomial featurds).
Then, your dot product will be in a space of dimensionaility+1)/2 The
kernel trick allows you to save and compute dot products iman
dimensional space.

Can we use any K(.,.)? o0 =Th_(& ., ,, S@)K(x,z))

¢ Afunction Kg,2 is a valid kernef it corresponds to an inner product in some
(perhapsinfinite dimensiondl feature space. K<, z) = & t;(2)t; (<)

Takethe quadratic kernelk(x,2 = k'2)?
Example: Direct construction (2 dimensional, for simplicity):
KX,2) = (4 21+ % 2)* = %2212 +2X 2, X5 2, + X2 2,2
= (%2, SArt{2} X%, %2) (22, SAr{2} 2,2, 2?)
=(x)" (2)A A dot product in an expanded space.
It is not necessary to explicitly show the feature function

Generalcondition: construct the Gram matrix{x ,z); OKSO1 U K|
positivesemi definite.

[ {nnc ClItft Qwmc 26



SVMs

m TheGram maitriof a set ofn vectors S ={Xx.} Is
the nxn matrix Gwith G; =xx;
¢ The kernel matrix is the Gram matrix of 0 ~ (XYL .
C (size depends on the # of examples, not dimensionality)

m Direct option:
cLFT &2dz KbDSEeZ&SKE GBS (GKS DNI
easy to see that it will be positive senefinite)
» Indirect:

¢ If you have the Kernel, write down the Kernel matfjxand
show that it is a legitimate kernel, without an explicit
construction of. x)

[ {nnc CItf Qwmc 27



= You can construct new kerndl§® E)®rom
existing ones:

¢ Multiplying k(x, E)®y a constant:
1 (® E)&ckX, E)Q

C Multiplying K(X, I‘E)(by“a functiorf applied tox andE:Q
K@, E)ET(X)k(x, E)RE)Q

¢ Applying a polynomial (with nenegative coefficients) to
k(x, E)Q .
ka@x, EYEP(k(x, E)Q withPz0 BZ andap)

¢ Exponentiatind(x, E)Q
k@, E)& expk(x, E)

SVMs [ {nnc CItf Qwmc 29



fX) =Th,(@ ,, S(@)K(x,2))

= A method to run Perceptron on a very large feature set,
without incurring the cost of keeping a very large weight vectol

» Computingthe weight vector cate done in the original feature
space.

m Notice this pertains only te:fficiency:the classifier is identical
to the one you get by blowing up the feature space.

m Generalizations still relative to the real dimensionality (or,
related properties).

m Kernels were popularized [8VMs but apply to a range of
models, Perceptron, Gaussian Models, PCAs, efc.
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SVMs

m There is dradeoff between the computational
efficiencywith which these kernels can be computed
and the generalization abilif the classifier.

m For example, using such kernels the Perceptron
algorithm can make an exponential number of

mistakes even when learning simple functions
OYKFNR2YZIw?2 (i RZBedDBIG&&®R 2>b Lt { Q

» In addition,computingwith kernelsdependsstrongly
on the number of examples It turns out that
sometimesworking in the blown up spaceis more
efficientthanusingkernels @/ dzyo e s w@ji K= L/ a [ ¢
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SVMs

Is it always worthwhile to define kernels and work In
the dual space?

Computationallyjcumby,Rott2003]
¢ Dual space t; m?vs, Primal Spacgt, m

¢ Wherem is # of exampled,, t, are the sizes of the (Dual,
Primal) feature spaces, respectively.

¢ Typicallyt, <<, so it boils down to theumber of
examplesone needs to consideelative to the growth in
dimensionality.

Rule of thumb: a lot of examplés use Primal space

Most applications today: People useplicitkernels. That is,
they blow up the feature space explicitly.
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» Do we want to use the most expressive kernels we
can?

¢ (e.g., when you want to add quadratic terms, do you really
want to add all of them?)

= No; this is equivalent to working in a larger feature
space, and will lead to overfitting.

» Here is a simple argument that shows that simply
adding irrelevant features does not help.

SVMs [ {nnc ClItt Qwmc 33



Given: A linearly separable set of poifts{x> X} 2 R"with
separatorw 2 R

» EmbedS into a higher dimensional spageQ bhy adding
zeroomean random noise to the additional dimensions.

m Theng @x= (w,0)¢(x,e) = wex
Sog Q R'Qstill separatess

» We will now look a®]||x|| which we have shown to be
Inversely proportional to generalization (and mistake bound)
g6 { = SQUMingQEQ@uK MPsQpY pi
} MiNgW™E K U J & uugo | X E 9|0
m Sinceu p E Quxye)|| & |[xjh u 6
» The new ratio is larger, which implies generalizasaffers.

» Intuition: adding a lot of noisy/irrelevant features cannot help
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SVMs

m Multi-layer network were designed to overcome the
computational (expressivity) limitation of a single

threshold element. —
activation
» The idea is to stack several
layers of threshold elements,
each layer using the output of
the previous layer as input.

Output

>

» Multi-layernetworks can represent arbitrary
functions,but buildingeffective learning methods
for such networkwvas [thought to be] difficult.
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SVMs

m LinearUnit: Multiple layers of linear functions
0, = wx producelinear functions.We want to

represent nonlineafunctions activation Output
. a
m Threshold units:o; =sgn(w ¢x) a
are not differentiable, hence R
unsuitablefor gradientdescent. W,
Input

» The key ideaRumelhart Hinton,William, 1986) w
to notice that the discontinuity of the threshold
element can be represents by a smooth Horear
approximation:o, = [1+exp{-w ¢x}|*

[ {nnc ClItft Qwmc 36



SVMs

m LGQa Slhae (2 chB8ROEY20zKE6 [ 2 LI {E
m Given feedback (truth) at the top layer, and the activation at the

layer below it, you can use the Perceptron update rule (more
generally, gradient descent) to updated these weights.

w The problem is what to do witt
the other set of weightg we dgj| activation S
not get feedback in the e
intermediate layer(s). Hidden
wh;
Input

[ {nnc ClItt Qwmc 37



SVMs

The problem is what to do with Aclivation Output
the other set of weightg we do X

not get feedback in the W
intermediate layer(s). Hidden
Solution:If all the activation 1
functions are differentiable, then Wi
the output of the network is also Input

a differentiable function of the input and Wei-ghts in the network.

Define anerror function(e.g., sum of squares) that is a differentiable
function of the output, that this error function is also a differentiable
function of the weights.

We can then evaluate the derivatives of the error with respect to the
weights, and use these derivatives to find weight values that minimize tl
error function. This can be done, for example, using gradient descent (
other optimization methods).

This results in an algorithm called bamopagation.
[ {nnc ClItft Qwmc 38



SVMs

» What general laws constrain inductive learnihg

¢ What learning problems can be solved ?
¢ Whencan we trust the output of a learning algorithm ?

m  We seek theory toelate
¢ Probabilityof successfulearning
¢ Numberof trainingexamples
¢ Complexityof hypothesisspace
¢ Accuracyto which target concept iapproximated
¢ Mannerin which training examples are presented
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Recall what we
did earlier:

» We want to be able to say something rigorous about
the performance of our learning algorithm.

» We will concentrate on discussing the number of
examples one needs &eebefore we can say that
our learned hypothesis is good.

SVMs [ {nnc ClItt Qwmc 40



w We have seen many examples (drawn according o

w Since in all the positivexamplesx; was active,it isvery likely that it will be
active in future positive examples

w If not, in any case, isactive only in a small percentage of the
examples so our error will be small

Eop = P, 109, h(0)

f and h disagree
h=X Ox, 33X, DX, DX DX,
SVMs [ {nnc ClItt Qwmc
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Instance Spacé&,Input to the Classifier;  Output Spate {1, +1}
Making predictions withh: XA Y
D:An unknown distribution over X

S:A set ofexamplesdrawn independently fronD; m = |S|, sizeof sample.
Now we can define:
= True ErrorErro, =Pry y, p[N(X): =]
= Empirical Errarerros=Pry , s[h(¥) 1 =y =a, [h(%): =y

¢ (Empirical Error (Observed Error, or Test/Train error, depending on S))
This will allow us to ask1)Can we describe/boundError, givenErrorg ?

m FunctionSpace: € Aset of possible target concepts; targetfisXA Y
» Hypothesis Spacél ¢ A set of possible hypotheses

m This will allow us to ask2)Is C learnable?

¢ lIs it possible tdearna given function ir€using functions i, given the
supervised protocol?
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Probably Approximately Corre

Cannot expect a learner to learn a concepactly

Cannotalways expect to learn @ose approximation
to the target concept

Therefore the only realistic expectation of a good
learner is thatwith highprobabilityit will learn a
close approximatiomo the targetconcept.

In Probably Approximately Correct (PA€3rning,

g one requireghat givensmallparameterse andd,
& with probability at leas{1- d) alearner produces a
hypothesis witherror at moste

Thereason we can hope for that is tli&nsistent
Distributionassumption.
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Consider a concept cla€slefined over an instance spae
(containing instances of lengtt), and a learnekLusing a
hypothesis spaceil.

CisPAC learnablby LusingH if
c forallfl G
¢ for all distributionsD over X and fixedO<e, d< 1,

L, given a collection ah examples sampled independently
according taD produces

. ,L\o"\ ¢ with probability at leas{1- d) a hypothesi$ | Hwith error at
& moste, (ErrorD=PrOf(x) : = h(x)])
< : -y .

I° where m is polynomial i/ e, 1/ d, n andsize(H)
Cisefficiently learnablef Lcan produce the hypothesis time
polynomial inl/ e, 1/ d, n andsize(H)
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SVMs

We impose two limitations:

Polynomialksample complexity(information theoretic constraint)

¢ Is there enough information in the sample to distinguish a
hypothesish that approximatef ?

Polynomiakime complexity(computational complexity)

¢ Is there an efficient algorithm that can process the sample and
produce a good hypothesis?

To be PAC learnable, there must be a hypothesisH with
arbitrary small erroffor every fl C. We generally assuntéE C
(Properly PAC learnable if H=C)

Worst Case definitiarthe algorithm must meet its accuracy
¢ for everydistribution (The distribution free assumption)
¢ for everytarget function f in the class C
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Claim: The probability that there exists a hypotheéisH that
(1) isconsistenwithmexamples and
(2) satisfiegrror(h) 2 (Error(h) =Pr, 5 [f(X): =h(x)] )
Is less than |HH&)™.

Proof: Leth be such a bad hypothesis.
- The probability thditis consistent with one exampld

Pr, . [f(x)=h(x]<1- e

- Since theanexamples are drawn independently of each other,
The probability thatis consistent witim example ofis less than(1- ¢)"

- The probability th&ome hypothesis irHis consistent witimexamples

: - ST , B
isless than| H |(1- €) b2iGS GKIiG 6S FRYQ
this argument; it can be done with
relative to a distribution oveK Y.
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We want this probability to be smaller thdinat is:

m
H|(te) <d

IN(H|) + nin(1-€) < In(d)

What do we know now
about theConsistent
Learner scheme?

(with = Ix+¥/ 2 + > 1x;in (1-e) <- € gives a safed)

m>§{ln(| H )+ In(1/ )}

(gross over estimate)

We showed that a
m-consistent hypothesis
generalizes wellerr<)
(Appropriate mis a
function of[H|, , )

|t i s call ed Occamoprefareacavargssmat c a u s

hypothesis spaces

What kind of hypothesis spaces do we want ?

To guarantee consistency we nedeiC. But do we want the smallégpossible ?

Large ? Small ?
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Consistent Learners

Immediately from the definition, we get the following general scheme

for PAC learning

Givena sample D afn examples

Findsomeh | H that isconsistentwith allm examples

We showed thatf mis large enough, a consistent hypothesis must be close
enough tof

Check tham is not too large (polynomial in the relevant parameters) : we
aK2¢6SR GKIG 0KS GOf2aSysSaaé¢ 3IdzZ NIy
m>1/(In |H| +In 1/)
Showthat the consistenthypothesish i Hcan be computed efficiently

SVMs

_ _ We did not need to show it directly.
Inthe case of conjunctions See above.

We used the Elimination algorith==—"_.wa a hypothesithht isconsistent
with the training set (e=Zyw0 compyte

We showeddirectlythat if we have sufficiently many examplgm{ynomial
in the parameters), than h is close to the target function.
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Determining whether there is a-term DNFconsistent
with a set of training data is NIRard

J herefore the class afterm-DNHs not efficiently
(Aroperly) PAC learnable due to computational complexi

le have seen an algorithm for learning N

And, k-CNHs a superset of-term-DNFE
¢ (That is, every4kerm-DNF can be written as aGi\F)

»m Therefore,C=kierm-DNFcan be learned as using=«CNF
as the hypothesis Space ! This result is analogous to an earlie

20aSNBIGAZ2Y GKI O
0 Importance of representation: linear separators than conjunctions.

¢ Concepts that cannot be learned using one representation can
be learned using another (more expressive) representation.
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w  Two types of nonlearnability results:

m Complexity Theoretic

¢ Showing that various concepts classes cannot be learned, based
on wellaccepted assumptions from computational complexity
theory.

¢ E.g. :C cannot be learned unless P=NP

m Information Theoretic

¢ The concept class is sufficiently rich that a polynomial number of
examples may not be sufficient to distinguish a particular target
concept.

c . 20K (0@LS Ay@2t @S GNBLINBaSyiialr
¢ The proof shows that a given class cannot be learned by
algorithms using hypotheses from the same class. (So0?)

m Usually proofs are for EXACT learning, but apply for the
distribution free case.
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SVMs

Assume we are trying to learn a concept f using hypotheses
in H, butfi H

In this case, our goal should be to find a hypothidisH,

with a small training error:

Err(h) = 1 [{xI training _examplesf (x), h(x)}|

We want a guarantee that a hypothesis with a small training
error will have a good accuracy on unseen examples

Erry (h) = Prg o[ F(X), h(X)
Hoeffdingboundscharacterize the deviation between the
true probability of some event and iggbservedirequency
over m independent trials. Pr[p> éﬁ el <e ™

¢ (p is the underlying probability of the binary variable (e.g., toss is
Head) being 1)
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m Therefore, the probability that an element in H will have training error which
off by more thane can be bounded as follows:

Pr[Err, (h) > Err,.(h) + €] < & 2™

m Doing the same union bound game as before, with
d=|H|e 2™’
m We get ageneralization boung a bound on how much will the true errét,
deviate from the observed (training) erréf,

m For any distributiorD generating training and test instances, with probability
least1-d over the choice of the training set of size (drawn 1ID), for athi H

log|H |[+log(1/ d)
2m

SVMs [ {nnc ClItt Qwmc

Error, (h) < Error,(h) +




= An agnostic learner which makes no commitment to
whetherf is inHand returns the hypothesmith least
training error over at least the following number of
examplean can guarantee with probability at leagl-d)
that itstraining erroris not off by more thae from the

true error.

m> —{ln(l H |) +In(1/ d)}

®arnapijit
Y depend
S on
the log of the sjze of th
@ hypoth ]
©sis space
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SVMs

The previous analysis was restricted to finite
hypothesis spaces

Some infinite hypothesis spaces are more expressive

than others

¢ E.g., Rectangles, vs.-Erdes convex polygons vs. general
convex polygons

¢ Linear threshold function vs. a conjunction of LTUs

Need a measure of the expressiveness of an infinite
hypothesis space other than its size

TheVapnikChervonenkisdimension YVC dimension
provides such a measure.

Analogous tdH| , there are bounds for sample
complexity usin¢y C(H)
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Shattering

AWe say thatset S of examplesshattereoly aset of functionsfH
for every partitiohthe examples in S into positive and negative
there is a functionH that gives exactly these labels to the exam
(Intuition: A rich set of functions shatters large sefs of points
Left bounded intervals on the redDaadifor some real numbed

e -
0 a 0 _ a +

Sets ofwopoints cannot be shattered
(we mean: given two points, you can label them in such a way tl
no concept in this class will be consistent with their labeling)
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VC Dimension

AWe say thatset S of examplesshattereoly aset of functionsfH
for every partitiohthe examples in S into positive and negative
there is a functionH that gives exactly these labels to the exam

ATheVC dimensi@f hypothesis spadever instance spate
IS the size of thergest finite subset of X that is shattered by H.

[ Even if only one subset of this size doe§ it!

Alf there exists subset of sidéhat can be shattered, WéH) >=d

Alf d aherVC(H) < d
VC(Half intervals) = 1 (nosubset of siZ&can be shattered)
VC( Intervals) = 2 (nosubset of siZ&can be shattered)

VC(Hal§paces in the plane) Hi8osubset of sizecan be shattered)

[ Some are shattered, but some z;re
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Sample Complexity & VC Dimensi

AUsing VC(H) as a measure of expressiveness w® beam ahgorithn
for infinite hypothesis spaces.

A Given a sample Drofxamples
A Find somkl H that izonsisterwith alinexamples
A If
A m>1{8VC(H)Iog£3+4Iog(g)}
e~ € a

A Then with probability at idad)t h ha

What if H is
(that Is, his polynomial we havA&learning algorithm;| finite? }
to be efficient, we need to produce the hypetthesstly.

ANotice that to shatteexamples it must be 2, solog(|H|) VC(H)
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AConsider axis parallel rectangles in the real plan
ACan we PAC learn it ?

(1) What is the VC dimension ?

ABut, no five instances can be shattered

There can be at most 4 distinct

° extreme points (smallest or large

° along some dimension) and the:
L7 cannot be included (labeled +)

without including the 5th point.
Therefore VC(H) = 4

As far as sample complexity, this guarantees PAC learnabilty.
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Sample Complexity Lower Bound

AThere is also a general lower bound on the minimum number @
necessary for PAC leaning in the general case.

AConsider any concept dzssch that VC(C)>2,
any learndrand small enougld.
Then, there exists a distribDtiamd a target functio@isuch that
If Lobserves less than

VC(C)- 1

32¢
examples, then with probablllty ad,least

L outputs a hypothesis having erra(h) >

m = max[ log( )

]

Ignoring constant factors, the lower bound is the same as the uj
except for the extra layfacttor in the upper bound.
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SVMs

Boosting is (today) a general learning paradigm for putting
together a Strong Learner, given a collection (possibly
Infinite) of Weak Learners.

The original Boosting Algorithm was proposed as an answel
to a theoretical question in PAC learniiithe Strength of Weak
Learnability;Schapire 89]

Consequently, Boosting has interesting theoretical
Implications, e.g., on the relations between PAC learnability
and compression.

¢ If a concept class is efficiently PAC learnable then it is efficiently PAC
learnable by an algorithm whose required memory is bounded by a
polynomial in n, size ¢ and logél/

¢ Thereis no concept class for which efficient PAC learnability requires
that the entire sample be contained in memory at one tigenere is
Fftoglea Y2UKSNI It 3I2NAUGKY OGKI 0
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m Algorithm

Select a smalubset ofexamples

Derive a rougirule of thumb

Examine2nd set of examples

Derive 2nd rule of thumb

Repeafl times

Combine the learned rules into a single hypothesis

O 0 0 0 0O 0

» Questions
¢ Howto choose subsets of examplesdgwamine oreach round?
¢ Howto combine all the rules of thuminmto singleprediction rule?

m Boosting

¢ Generalmethod of convertingough rulesof thumb into highly
accurate prediction rule
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m Giventraining set(x;, y;0 2 x..%§.,) O
m y; 2 {-1, +1} is the correct label of instance&xX
mC2NJ 0 ' mZ XZI ¢

¢ Construct aistributionD,2y 9 MZ XYY
¢ Findweak hypothesi® a NXzf S 2 F (G KdzY o€ 0
h,: X! {-1, +1}
with small error, on DO:
=P [N (%) =y
m Output:final hypothesi;
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¢ Dy(i)=1/m
¢ GivenD, and h, :
C D= 0)/z, €7

D(i)/z €+

Constructingd, 2 y 9mz XYy |thewaytol/m

Think about unwrapping it all

Zy = x Dy(i) exp(— oy y; hy(x;))

4

< 1; smaller weight

T =h(x) —— 1; larger weight

= @)/z exp(-= yih () |Notesabouta: et = sqry(a - 1121
_ . C Positivedue to the weak learning
where z, = normalization constant assumption
and C Exampleghat we predictedcorrectlyare

== Y2 In{ (T ¥/, }

demoted others promoted
\ C Sensible weighting schemebetter
hypothesis (smaller errdy larger weight

m Final hypothesigt, , (X) = signd; - h(x) )

SVMs
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Round 1

£1=0.30
0=0.42
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€5=0.21

05=0.65
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A cool and important note
about thefinal hypothesis:
it is possible that the
combined hypothesis mak
no mistakes on the training
data, but boosting can still
learn, by adding more wea
hypotheses.

H
final

~sign| 0.4 +0.65 +0.92

68
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m Boosting
» Bagging
» Random Forests
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» Initialization:
¢ Weigh all training samples equally

» lteration Step:
¢ Train model on (weighted) train set
¢ Compute error of model on train set
¢ Increase weights on training cases model gets wrong!!!

mC@LIAOIFtftE& NBIdzANBa mMnnQ

» Return final model:
¢ Carefully weighted prediction of each model
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Bagging predictors is a method for generating multiple versions of a
predictor and using these to get an aggregated predictor.

The aggregation averages over the versions when predicting a numerical
outcome and does a plurality vote when predicting a class.

Themultiple versionsaare formed by makin@ootstrap replicate®of the
learning set and using these as new learning sets.
c Thatis, use samples of the data, with repetition

Tests on real and simulated data sets using classification and regression
trees and subset selection in linear regression show that bagging can give
substantial gains in accuracy.

The vital element is thastability of the predictioomethod. If perturbing
the learning set can cause significant changes in the predictor constructec
then bagging can improve accuracy.
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» Draw 100 bootstrap samples of data
m Train trees on each sampfe 100 trees
m Average prediction of trees on owof-bag samples

N\

Average prediction
(0.23 + 0.19 + 0.34 + 0.22 + 0.26
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» Draw1000+bootstrap samples of data

» Draw sample of available attributes at each split

m Train trees on each sample/attribute s&t 1000+trees
m Average prediction of trees on owof-bag samples

Average prediction
(0.23 + 0.19 + 0.34 + 0.22 + 0.26
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SVMs

So far we focused on Binary Classification

For linear models:
¢ Perceptron, Winnow, SVM, GD, SGD

m The prediction is simple:
¢ Given an examplex,
¢ Prediction =sgnw'x)
¢ Where w is the learned model

» The outputis a single bit

[ {nnc ClItt Qwmc
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mmm) = Multi-class Classification (y {1,...,K})

SVMs

c OKF N} OG4SNJI NBO23ayAilAz2y o06Wc Qo

c R20dzYSyid OflaaArxFfFAOFIGAZ2ZyY 6 WK
= Multi-label Classification (y {1,...,K})

c R20dzYSyid OflFaaArAFTAOLIGAZ2Y 6w
» Category Ranking (i pK)

c dzZASNJ LINBFSNBYOS owot20S p f

c R20dzYSyid OflFaaArxfTAOlFIGAZY 6 WK
» Hierarchical Classification [(y{1,..,K})

¢ cohere with class hierarchy
cLX I OS R20dzyYSyid Ayi2 WNW{RRBREIAL
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» Learning:
¢ Given a data set D = {(¥)};,™
C Wherex2 RN y293 MEZHEZIXZ]|1 YD
» Prediction (inference):
¢ Given an examplg, and a learned function (model),
¢ Output a single class labsits
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» Most schemes for multiclass classification work by
reducing the problem to that of binary classification.

» The are multiple ways to decompose the multiclass
prediction into multiple binary decisions
¢ Onevsall
¢ Allvsall
¢ Error correcting codes
= We will then talk about a more general scheme:
¢ Constraint Classification

» It can be used to model other ndmnary
classification and leads ®tructured Prediction
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SVMs

m AssumptionEach class can be separated fralinthe
restusing a binary classifier in the hypothesis space.

» LearningDecomposed to learninkjindependent
binary classifiers, one for each class label.

» Learning:
¢ LetDDbe the set of training examples.

¢ 8labell, construct a binary classification problem as follows:
A Positive examples: ElementsDivith labell
A Negative examples: All other elementsf

¢ This is a binary learning problem that we can solve, producin
K binary classifiers ww,2 wX

m DecisionWinner Takes All (WTA):
C f(x) =argmaxw; 'x
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m MultiClassclassifier °
¢ Function f:RA {1,2,3,....k} o ©

m Decompose into binary problems

= No theoretical justification
¢ Need to make sure the range of all classifiers is the same

» (unless the problem is easy)
SVMs [ {nnc ClItt Qwmc



» Findv,w,v,,v, I R'such that
c v.x>0 iffy=red

C V. x>0 iffy=blue

C Vgx>0 iffy =green

c v.x>0 iffy=yellow

m Classificationf(x)=argmaxv; x

SVMs

Or Ot O >

[ {nnc CI ¢t

o ©
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SVMs

AssumptionThere is a separation betwe&very pairof classes
using a binary classifier in the hypothesis space.

LearningDecomposed to learninfdx choose 2] ~%«
iIndependent binary classifiers, one corresponding to each pair
of class labels. For the pdiy)):

¢ Positive exampleall exampelswvith labeli
¢ Negative exampleall examples with labgl

DecisionMore involved, since output of binary classifier may
not cohere. Each label getslkvotes.

Decision Options:

¢ Majority: classify example x to take lakhéd i wins on X more often
thanjé6 2T mZ X1 0

¢ A tournament:start with n/2 pairs; continue with winners .
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m FINAV, Vg Vi Vg Vo Vg, | RYsuch that

C Vx>0 ify=red
<0 ify=Dblue
C Vx>0 if y =red
<0 ify=green
C ... (for all pairy

Individual
Classifiers

SVMs [ {nnc

Decision

Reqgions

Cl ff

It is possible to

separate all k classes

with the O(I€)
classifiers




Tournament Majority Vote

1 red, 2 yvellow, 2 green
C?

All are postlearning andnightcause weird stuff
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SVMs

Assumem examplesk class labels.
¢ For simplicity, say, m/k in each.

One vs. All:
¢ classifieff; m/k (+)and (k1)m/k (-)
¢ Decision:
¢ Evaluatek linear classifiers and do Winner Takes All (WTA):
C f(x) =argmaxf(x) =argmaxw;'x
All vs. All:

¢ Classifief: m/k (+) and m/k+)

Cc More expressivity, but less examples to learn from.

¢ Decision:

¢ Evaluatek? linear classifiers; decision sometimes unstable.
What type of learning methods would prefer All vs. Al

(efficiencywise)? (Think about Dual/Primal)
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SVMs

Learning optimizes ovéocalmetrics
¢ Does not guarantee goaglobalperformance
c WeR2y Qi OF NB | 02dzil loc&@assifiSSNF 2 NXY | y OS

N5

PoordecompositionY poor performance
¢ Difficult local problems
¢ lrrelevant local problems

Especially true for Error Correcting Output Codes
¢ Another (class of) decomposition
¢ Difficulty: how to make sure that the resulting problems are separable.

Efficiency: e.g., All vs. All vs. One vs. All
Former has advantage when working with the dual space.

Not clear how tageneralize multclass to problems with a very large # of
output.
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yPositive 3 Negative
; :

= Winnow learnamonotoneBooleanfunctions w

m We extended to general Boolean functions via

mQa
G
G

If [(W+- W’)ﬂXZ mb Y, \Ni+ « Wi+I‘yX‘, W, « Wi'r"yxi °

FEFYyOSR 2AyYy26¢
2 weights per variable;

DecisiondzA Ay 3 (GKS aSFFSOUALK
the difference between wand w

This is equivalent to the Winner take all decision

Learningin principle, it is possible to use thev&all rule and update each set
of n weightsseparatelfy o0 dzi ©$S &dzZ33S&aGSR GKS dol f
takes into account how both sets nfweights predict on example

Can this be generalized to the casekof

labels k >2? 2S YySSR | a3t

learning approach
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SVMs

» Ina lvsall trainingyou have a target node that represents
positiveexamples and target node that represemtsgative
examples.

m  Typically, we train each node separately (mineAune
example).

» Rather, given an example we could say: this is merexample
than ag example.

If [(W+' W_)T[X2 q] 5 y, \Ni+ « VVi+ryXi, WI_ « WI' r-yxi

» We compared the activation of the different target nodes
(classifiers) on a given example. (This example is moretclass
than class)

m Can this be generalized to the casektdbels,k >2?
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» Themarginof ahyperplanefor a dataset is the

distance between théyperplaneand the data point
nearest to it.

SVMs

\\
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SVMs

Defined as the score difference between the highest

scoring label and the second one

Score for

alabel
— T
= Wiapel X

Labels

Multiclass Margin

M Blue
M Red

“ Green
M Black

[ {nnc ClItt Qwmc
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» Recall: Binary SVM
¢ Maximize margin
¢ Equivalently,

Minimize norm of weights such that the closest points to the
hyperplanehave a scoréd

m Multiclass SVM

¢ Each label has a different weight vector (like asell)
¢ Maximize multiclass margin

¢ Equivalently,

Minimize total norm of the weights such that the true label is
scored at least 1 more than the second best one
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Recall hard binary SVM

Size of the weights. Effectively
w reqularizer

S.t.V’i, y,:wa,- >1

4 &

min %w
W

min % E wfwk
W1, Wga, - Wi

x—wix>1 V(x;,y:) € D,
ke{l,2,--- ,K},k#Yy;,

k
8:%: w

The score for the true label is higher than the scofe
for any other label by 1
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Size of the weights. Effectively, ¢20dl ¢ atl O1e |9

reqularizer gllow too many _examples _to
i violate the margin constraint

/

w1,wz,--,w1<,£ %ZW Wk,+C Z 6&

(xhyl)eD
X = Wk x2>1-— 61, V(x*i,y‘i) € Da
N ke{l1,2,---,K}L,k#yi,

\

Eel N W

k
T
8:%: Wy,

A"

\

A\
The score for the true label is higher than the scofe
for any other label by
1 = 1i

\
N

Slack variables. Not all
examples need to satisfy the
margin constraint.

TG R P P

Slack variables can only be

positive
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SVMs

Training
c hLIGAYAT S GKS a3ft206lté¢ {+a 202S00GAOS

Prediction:

¢ Winner takes all
argmaxw;'x

With K labels and inputs k", we havenKweights in all
¢ Same as ongsall

Why does it work?
c 2Keé A& 0KAa (GKS GNRARIKGE RSTAYAIGAZ2Y 27

A theoretical justification, along with extensions to other algorithms
0S@2yR {+ta Aa 3IAAGSY 0@ da/ 2YAUNI AYC
¢ Applies also to muHiabel problems, ranking problems, etc.
¢ [DavZimak with D. Roth and S. H&eled]
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The examples we give the learner are pairs (x,y), y € {1,...k}

The “black box learner” (1 vs. all) we described might be thought of as
a function of x only but, actually, we made use of the labels y
» How isy being used?

-y decides what to do with the example x; that is, which of the k classifiers
should take the example as a positive example (making it a negative to all
the others).

» How do we predict?
a9 Let:f(x)=w,-x
- Then, we predict using: y"=argmax,, ,f (x)

»m Equivalently, we can say that we predict as follows:
2 Predict y iff
Q Vy €{1,.kLy—-=y (w,/-w,T)-x>0 (*¥)

w  So far, we did not say how we learn the k weight vectors w, (y = 1,...k)

~ Can we train in a way that better fits the way we predict?
-1 What does it mean?

‘ Is it better in any well defined way?

MultiClass CS446 Fall ’16




- »  We are learning k n-dimensional weight vectors, so we can concatenate

® : .
-~ ’.0 the k weight vectors into Notice: This is just a representational
o @ w= (W, Wy,...W,) € trick. We did not say how to learn the
® weight vectors.

n  Key Construction: (Kesler Construction; Zimak’s Constraint Classification)

1 We will represent each example (x,y), as an nk-dimensional vector, Xy with x
embedded in the y-th part of it (y=1,2,...k) and the other coordinates are 0.

i E.g., Xx,=(0,0,0) € R (here k=4, y=2)

Now we can understand the n-dimensional decision rule:

m  Predicty iff Vy €{1,.khy—-=y  (wS-w,")-x>0 (*¥)
Equivalently, in the nk-dimensional space.
Predict y iff Vy €{1,.khy—-=y w'-(x,-x,)=w-x,>0

®  Conclusion: The set (x,,,, +) = (x,— X, +) is linearly separable from the

set (-X,y , - ) using the linear separator w € Rkn,
1 We solved the voroni diagram challenge.
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MultiClass

m Training:
2 [We first explain via Kesler’s construction; then show we
don’t need it]
- Given a data set {(x,y)}, (m examples) withx € R", y € {1,2,..k}
create a binary classification task:
(X, = Xy, +), (X, —x, =), forally’ ==y (2m(k-1) examples)
Here x, € R

1 Use your favorite linear learning algorithm to train a binary
classifier.

w Prediction:

- Given an nk dimensional weight vector w and a new example
§ T
X, predict: argmax, W X,
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If (x,]) was a given fglimensional
example (that isx has is labeled,
then

- Transform Examples C x, 82 M ¥ Xilake positive

examples in thek-dimensional
spacecx; are negative examples,

<(0x,00 1 R
Aj = (0,0,0,X) | RKd
Xj=Xi- X = (0.X,0,-X)

W = (W, Wo,WoW,) | R
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Given (X, Y1), - ko Y I R X {1,....k}

Create

¢ P=CP(x.y)

¢ P=C PGy

= Findw =(wy, ...,w,) I R, such that
C w.x separated from P<

m One can use any algorithm in this space: Perceptron, Winnow, SVM, etc.

» To understand how to update the weight vector in thelimensional
space, we note that

o ©O

O W' CXyo, O (in the nk-dimensionalkpace)
m is equivalent to:
O (wy,"qwy g ¢x, O (in then-dimensionalspace)
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