» HWA4is due on Saturday 3/11

¢ No extensions!

Questions?

¢ We will release solutions on Saturday night, so there is
enough time for you to look at it before the exam.

» Midterm exam on Thursday 3/16
¢ Closed books; iIn class; ~4 questions
¢ All the material covered before the midterm
¢ Practice midterms will be released over the weekend
¢ Next Tuesday 3/14Review

m Additional Office hours:
¢ 8:309:30 Tomorrow (Wednesday)
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http://l2r.cs.illinois.edu/~danr/Teaching/CS446-17/Hw/hw4/hw4.pdf

SVMs

Scale of Projects:
25% of the grade

Projectsproposals are due oMarch 10 2017

Within a week we will give you an approval to continue with your project
along with comments and/or a request to modify/augment/do a different
project There will also be a mechanism for peer comments.

We encouragé¢eam projects-a team can be up to 3 people

Pleasestart thinking and working on the projenbw.

Yourproposal idimited to 1-2 pages, but needs to includeferences
and, ideally, some of the ideas you have developed in the direction of t
project (maybe even some preliminary results).

Any project that has a significant Machine Learning component is good

Youcando experimental work theoretical work, a combination of both
or a critical survey of results in some specialized topic.

The workhasto include some readindeven if you do not do a survey, you
must read (at least) two related papers or book chapters and relate you
work to it.

Originality is not mandatory but is encouraged.
Try to make it interesting!
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SVMs

Fake News Challengenttp://www.fakenewschallenge.org/

KDD Cup 2013:

¢ "Author-Paper Identification™: given an author and a small set of papers, we are asked
identify which papers are really written by the author.
A https://www.kaggle.com/c/kddcup-2013-author-paperidentification-challenge

c “Aut hor diwverpabet of document; profile the author: identification, gender,
native | anguage,
Caption Control: Is it gibberish? Spam? High quality text?
¢ Adapt an NLP program to a new domain

Workon making learned hypothesis (e.g., linear thresHaluctions, NN)
more comprehensible
¢ Explain the prediction

Developa (multi-modal) Peoplddentifier
CompareRegularization methods: e.g., Winnow vsRegularization
Large scale clustering of documents + name the cluster

Deep Networks: convert a state of the art NLP program to a deep
network, efficient, architecture.

Tryto provesomething
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https://urldefense.proofpoint.com/v2/url?u=http-3A__www.fakenewschallenge.org_&d=DwMFAg&c=8hUWFZcy2Z-Za5rBPlktOQ&r=4vDcLc57cD397QaRxR0yOZWu-Gg0KM96wcN0Jci1clw&m=9N8h2Wns4dC-DEEP0V-pObXSyU3Zl4uG51ahA1VuScE&s=LWaUdjsTWw0Y1xGXjw1TCh2YdQAXX-PgPe8hD0Yup7A&e=
https://www.kaggle.com/c/kdd-cup-2013-author-paper-identification-challenge

= No Distributional Assumption

m Training Distribution is the same as the Test
Distribution b s -

error
bound on test error

u Generalization bounds depend ............................
on this view and affects ooy e
model selection

Er(h) <BErrgh) +

P(VC(H), log(#),1/m) o @

m This is also called the
“Structural Risk MinimizatidGn pr .. nci pl e

training error
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No Distributional Assumption
Training Distribution is the same as the Test Distribution

Generalization bounds depend on this view and affeotlel
selection

Er(h) <Errgh) + P(VC(H), log@/1/m)

As presented, the VC dimension is a combinatorial parameter that is
associated with a class of functions.

We know that the class of linear functions has a lower VC dimension
than the class of quadratic functions.

But, this notion can be refined to depend on a given data set, and
this way directly affect the hypothesis chosen dogivendata set.

SVMs CS446 Spring ' 17



SVMs

So far we discussed VC dimension in the contextfiekd class
of functions.

We can also parameterize the class of functions in interesting
ways.

Consider the class of linear functions, parameterized by their
margin. Note that this is a data dependent notion.

CS446 Spring 17 6



SVMs

m LetX=RY ={+11}

» Which of these classifiers would be likely to
generalize better?
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SVMs

Recall the VC based generalization bound:
Err(h). errh) + Poly{VC(H), 1/m, log&}J

Here we get the same bound for both classifier:

Errr(hy) =Errg(hy)=0

h;, h,2 Hin2), VCHIin(Z)) =3

How, then, can we explain our intuition thaf $hould give
better generalization than [?

CS446 Spring 17



SVMs

m Although both classifiers separate the data, the
distance with which the separation is achieved is

different;




SVMs

The margirf; of a point x2 R with respect to a
linear classifier h(x) = sign@x +b) is defined as the
distance of xfrom the hyperplane wx + b = O:

" = |(w ex +D)/| w |

Themarginof a set of points {x X} with respect to
a hyperplane wis defined as the margin of the point
closest to the hyperplane:

o :mini°i =min|(w ¢x +b)/| w| |

CS446 Spring 17 10



m If H Is the space of all linear classifiers<ihthat
separate the training data with margin at le&st

then:

VC(H) - min(R/°?, n) +1,
» Where R is the radius of the smallest sphere<(ih
that contains the data.
m Thus, for such classifiers, we have a bound of the
form:

Err(h)- errrh) + { (O(R°2) + log(44))/m }/12

SVMs CS446 Spring 17 11



SVMs

Namely, when we consider the cladsof linear hypotheses
that separate a given data set with a mar§in

We see that
¢ Large Margirt A Small VC dimension &f

Consequently, our goal could be to find a separating hyperplane
w that maximizes the margiaf the setSof examples.

A second observatiothat drives an algorithmic approach is
that:

Smallw| A Large Margin

This leads to an algorithnfrom among all thosev $ that agree
with the data, find the one with theninimal siz¢w|

CS446 Spring ' 17 12



(PSO, PS1): Thiéestance between a pointand the hyperplan@efinedby (w; b)is: |wTx+b|/||w||

SVMs

This discussion motivates the notion of a maximal margin.
Themaximal margirof a data set S is define as:

*(S)=maX =1 MiNgy,sly Wx|

1. For a given wind the
closest point.

2. Thenfind the one the gives

the maximalmargin value across

allw’ (©f size 1).

Note:the selection of the point is in
the min and therefore themaxdoes
not change if we scale,s o i t

to only deal with normalized’ s .

How does it h el

P

us to deri ve th

I argmax,i=; Min, 5 sy WTX|J

CS44b Spring 17 13



Believe

SVMs

Theorem(Vapnik: If H. is the space of all linear classifiers |
<Nthat separate the training data with margin at ledsthen

VC(H) - Re/°?
where R is the radius of the smallest sphere<(ipthat
contains the data.
Thisis thefirst observatiorthat will lead toan algorithmic
approach
Thesecondobservationis that:
Small ||w|| A Large Margin

Consequently: the algorithm will be: from among all those
w § that agree with the data, find the one with the minimal
size||w||

CS446 Spring 17 14



margin. That is, given a data set S, fin
C W =argmay, =1 MiNyy2 sly wx|

m How to find this W?

wy =argmin{|jw|| %:8(X,y)2 S,yw'x,

m We want to choose the hyperplane that achieves the largest

1. For a given wWEind the closest
point.

2. A mo n @f sizell) findvwhevs
the maxi mizes th
Note: the selection of the point in thenin
and therefore the largest margin do not
changeifwescale,s o it s o0k
deal with normalizedv’ s .

m Claim:Definew, to be the solution of the optimization problem:

1 }. [1.Consider the set of

Then:

separating hyperplane.

SVMs CS446 Spr

W of[| Wol| =argmax,, ;=1 MiNyy2sYW'X | 2.Among those, choose

1] g O O d ” Wl S (
separate the data).

the one with minimal
size.

That is, thenormalization ofw, corresponds to the largest margin

ng ' 17 15



m Claim:Definew, to be the solution of the optimization problem:
wo =argmin{|jw|| “:8(x,y)2 S,yw'x, 1} (**)
Then:

W /|l Wol| =argmay, -1 mMingy, sy w'x
That is, thenormalization ofw, corresponds to the largest margin
separating hyperplane.

m Proof:Definew '= w/|| wy|| and let w* be the largesimargin

SVMs

separating hyperplanef size 1.We need to show thatv” "= w
Def. ofw, KNote first that w'/° (S)satisfies theconstraintsin (**);
therefore: || wy|| - |lw "/°(S)|| =1/°(S) .
m Consequently: _JDet . [Def ofw, _P\rﬂ"i”i
8(xY)2S W x =Ullwlly wo'x, |l woll , °(9
But since || w’' | |w'carrespondsloithe largestp |

margin, that isv ' w
CS446 Spring 17 16



m A separatindiyperplanew’x+b=0

Assumptiondata is linearly separable Distancebetween
Let(x, Y,) be a point onw™x+b = 1 w' x+b=+land-1is2 /|||
Then its distance to the separating plane What we did: |
wT x+b = 0is: WT (Xo Vo) +blAW[[E 1/]w] :"xx 1. C_onsu_nler all possible
TR IER I o ol | @ with different angles
®e |l X gxX »* ot \ 1 x ,xx 2. Scalewsuch thatthe
AR I Tt WXax constraints are tight
N x:xx SO y :"x 3. Pick the one with largest
ERRALOF x ceteed\ VT margin/minimal size
vot i *et o\
* e i h} et E hZ

whx +b, 1 if y;=1 \

whx +b- -1 if y,=-1

~d
14 \ 7

=Wl W W P T yw+h = -
SVMs CS446 s"‘ér’? rpg ’117 17



Ay ]Qﬂnaﬁwf Wa%‘h_mr‘(’h Sacondk plant  w=0 °),4>=‘/1 .
A R DY D) DAY/
2k, Sines wi wanl To seporafe s
. . Sq we (cm\k Luo L2
' T‘ TR N YRR

7‘

!
| W= (l :) b=-)
Distanea frowm <U1) +> fo ts plane (w:(u) L:-b

B e

- O THEN, Y
iy s SN i o LI\
= “r""f—'f"")\ BN
Ay I Z PSR

We conlh hare thq»/eco)(ﬁ X+j‘}=O ax
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= We have shown that the sought after weight vector w
IS the solution of the following optimization problem:

SVM Optimization{***)
®m  Minimize: %2 || w]| 2
Subjectto8(x,y)2 S: w'x, 1

m This isa quadraticoptimization problem in (n+1)
variables, with |S|=m inequality constraints.

» It has a unigue solution.

SVMs CS446 Spring 17 19



® -
ix X
'. %X xX : :
e e 1L X X x The margin of a linear separatot
. o0 ! !x XX x Tx+b=0
..l.l X xx X W x+h =
-SRIk XX X is2 /||
O
.-': C 1B X 5 X :
RN 8 max 2 / ||w| = min |jw]|
oo =minY2w'w
ol h,
I F!El—U U

st Ux @ w phH (o)~ "Y
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SVMs

mThe name “Support Vector
fact thatw* issupportedby (i.e. is the linear span of)
the examples that are exactly at a distari¢gw?*||
from the separating hyperplane. These vectors are
therefore calledsupport vectors

» Theorem:Letw* be the minimizer of
the SVM optimization problerft**)
for S=¥,y)}. Lel={:wx=1}
Then there exists coefficien® >0 such that:

W =& o ® Yi X; This representation

—————  should rijng

CS446 Spring 17 21




Examples:x | {0,1}"; Nonlinear mapping:x - t(x),t(x)I R"

Hypothesis:w Il R™;Decision function: f(x) =sgn(g§ :l'lwit(x)i) =sgn(w Tt(x)

If fx®), y®, w « w + ry®x®)

m I f n’ s | ar gewexpliatly. Elaveveraheveighevpctosvs e n
can bewritten asa linear combination of examples:

m . .
w =g raytx")
j=1
= Where| isthenumber of mistakesnade onw
m Then we can compute f(x) based ab  and)

f(x) = sgn(w Tt(x)) = sgn(& ra,y®t(x?)1t(x)) = sgn(A ra,y?K (x?,x))

j=1 j=1

SVMs CS446 Spring 17 22



Examples:x | {0,1}"; Nonlinear mapping:x - t(x),t(x)I R"

Hypothesis:w i R";Decision function: f(x) = sgn(w ft(x))
= In the training phase, we initializeto be an alzerosvector.

= For training sample® ho  hinstead of using the original Perceptron
update rule in theY space

If fx®), y®, w « w +r y®t(x®)

we maintains by

if f(x“)=sgn(Gray?kx?,x%)), y¥ then a,« a, +1
i=1

based on the relationship betweenand) :

w =g ra,yt(x?)
j=1

SVMs CS446 Spring 17 23



SVMs

m This, and other properties of Support Vector
Machines are shown by moving to tdeal problem

» Theorem:Letw* be the minimizer of
the SVM optimization problerft**)
for S = ¥; y)}-

Letl={:y, (W % +b)=1}.
Then there exists coefficien® >0
such that:

W =8a;,  ® Y, X

CS446 Spring 17 24


08-LecSvm-dual.pdf

SVMs

[ET-00 -0 stU0 @ & pf (@)™ 3

H_l

3

For simplicity, we ignore the bias term

The bias term is included in the regularization
This wusually doesn’

CS446 Spring ’

17

25

Similar to Perceptron, we can augment vectors to handle the bias ter
ofth (whp)NO #h (0 h) sothatd of U @ ©
m Then consider the following formulation

| ET-0 0 st U0 of phH (0ho)W
However, this formulation is slightly different from (***), because it is
equivalent to

ma t



» Computational Issues

¢ Trainingof an SVM used to be v&ry timeconsuming- solving
guadratic program.

¢ Modern methods are based on Stochastic Gradient Descent and
Coordinate Descent.

» Is it really optimal?
cls the objective function we

SVMs CS446 Spring 17 26



Real Data

17,000 dimensional context sensitive spelling

Histogram of distance of points from the hyperplane

In practice, even in the separable
case, we may not want tdepend
on the pointsclosest tathe
hyperplanebut rather on the
distribution of the distance If

only a few are close, maybe we
can dismiss them.

This applies both tgeneralization
bounds and to thalgorithm

1
1.2 —-0.15 -0.1 —-0.05 O 0.05 0.1 0.15
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SVMs

= Notice that therelaxation of the constraint:;

Ux @ p
m Can be done by introducingséack variable (per
example) and requiring: A large value of C mean
~ that misclassifications
Ux O P y r] TU  are bad resulting in
i smaller margins and less
— NOW’ we want to solve: training error (but more
L expected true error). A
| E |- L’) l’) b B small C results in more
h : training error hopefully
better true error.

st Ux @ p , N m!lQ

CS446 Spring 17 28



Now, we want to solve:

|ﬁE|—U O 0B,

) ) 0 1 5

st , p Ux @gn mn!'d

In optimumyu | Agip Ux @

= Which carbe written as

”p 114 TR~ r r N
I |EUU 0 | Adlp wu w 8

» Whatis the interpretation of this?

SVMs CS446 Spring 17 29



SVMs

The hard SVM formulation assumes linearly separable data.

A natural relaxationmaximize the margiwhile minimizing the
# of examples thatiolate the margin (separability) constraints.

However, this leads to neconvex problem that is hard to solve.
Instead, move to gurrogate losgunction that is convex.

SVM relies omhe hinge loss functiofnote that the dual
formulation can give some intuition for that too).

Min,, %2 |lw|| 2 +Ca > smax(Q 1-yw'x)
where the parametefCcontrols the tradeoff

between large margin (smdliv|| ) and small hinge
loss.

CS446 Spring > 17 30



m Theproblem we solved is:
Min % ||w|| % + cé& »
m  Where » > Ois calleda slack variableand is definedby:
¢ »=max(01-y;wx)
¢ Equivalently, we can say thgtwix, , 1-» », 0O

m And thiscan be writtenas

Min %4||w|| 2 + ca »
— - _ _
Regularization term Empirical loss
Can be replaced by otheegularization Canbe replaced by othelossfunctions
functions

m GeneralForm of a learning algorithm:
¢ Minimize empirical losgnd Regulariz@&o avoid over fitting)
¢c Theoretically motivated i mprovem
at the beginning of the semester.
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(a) Training data and an over- (b) Testing data and an over-
fitting classifier fitting classifier

SVMs CS446 Spring 17 32



(c) Training data and a better (d) Testing data and a better
classifier classifier

(DEMO)
SVMs CS446 Spring 17 33


http://www.csie.ntu.edu.tw/~cjlin/libsvm/js-toy/example.html

Underfitting Overfitting

Expected
Error
Variance
Bias
Model cymplexity
m Simplenfodels: Complex models:

Highblasand low variance  High variancend low bias

m Smaller C Larger C

SVMs CS446 Spring "17 34



@ Logistic Regression

/
1
min =w ' w + CZ log(1 + e_-""(WTX"))

w2 —
[

1 /

mvln §WTW + C Zl max(0,1 — yiw ' x;)
@ L2-loss SVM
1 /
muln 5 w!lw + C Z max (0.1 — y,-WTx,-)z

i=1
SVMs CS446 Spring ~ 1/ 35



Logistic regréssiun
L1-loss function
L2-loss function

loss
[+J

Y WATX



SVMs

1. Earlier methods used Quadratic Programming. Very slow.

2. The soft SVM problem is an unconstrained optimization problems.
possible to use thgradient descent algorithirStill, it is quite slow.
Many options within this category:
¢ lIterativescaling; nodinear conjugate gradienguastNewton methods
truncated Newton methods; trustegion newton method.

¢ All methods are iterative methods, thgenerate a sequence, that
convergedo the optimal solution of the optimization problem above.

¢ Currently:Limited memory BFGS very popular

3. 39 generation algorithms are based on Stochastic Gradient Decent
¢ Theruntime does not depend on=#(examples); advantage wharns very large.

¢ Stopping criteria is a problem: method tendsbe too aggressive at the beginniagd
reachesa moderate accuracy quite faft,u t convergesice becomesow if weare
interested in more accurate solutions

4. Dual Coordinated Descent (& Stochastic Version)

CS446 Spring 17 37



m Goal:l ET®@)k -0 0 —BI A@p oL ®)8 m: datasize
T~

m is here for mathematical correctness,

m Compute sulgradient of 0 )d, |doesn’t matter in
") U oww ifp WL w T otherwise ") U
1. Initializev 1IN Y
2. For every examplézhJ) v 'O
Ifwb w pupdatethe weight vector to
ON (p T)0 [O0ww ( -learningrate)
Otherwise ON p [ 0
3. Continue until convergence Is achiev
Convergence can be proved for a slightly This algorithm
complicated version of SGB.¢, Pegasop , should ri
SVM< E——— T 1 L7 56




= We can map data to a high dimensional spade: %¢{w (DEMO)

m Then use Kernel tricki (whw)  %{0) %{®) (DEMO2)
Primal: Dual:
| ET-0 0 6B, i ET% 110
st Ux %w) p st m | 617
o i 1 Ol (o)

TheoremLletw* be the minimizeof the primal problem,
| PADEAET EITE@EXO AT A8 Al
Thenx® B | U@
SVMs CS446 Spring 17 39


http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/svmtoy3d/examples/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/js-toy/example.html

SVMs

» Tradeoff between trainingime and accuracy
» Complex model.s simple model

Linear (LIBLINEAR) RBF (LIBSVM)
Data set C' Time (s) Accuracy | C o Time (s) Accuracy
a%a 32 5.4 84.98 | 8 0.03125 98.9 85.03
real-sim 1 0.3 9751 | 8 0.5 073.7 97.90
ijcnnl 32 1.6 92.21 | 32 2 26.9 98.69
MNIST38 | 0.03125 0.1 96.82 | 2 0.03125 37.6 99.70
covtype 0.0625 1.4 76.35 | 32 32 54,968.1 96.08
webspam 32 25.5 93.15| 8 32 15,571.1 99.20

From: http://www.csie.ntu.edu.tw/~cjlin/papers/lowpoly _journal.pdf
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