Where are we?

- Algorithms
 - DTs
 - Perceptron + Winnow
 - Gradient Descent
 - NN

- Theory
 - Mistake Bound
 - PAC Learning

We have a formal notion of “learnability”

- We understand Generalization
 - How will your algorithm do on the next example?
- How it depends on the hypothesis class (VC dim)
 - and other complexity parameters

- Algorithmic Implications of the theory?
Boosting

- Boosting is (today) a general learning paradigm for putting together a Strong Learner, given a collection (possibly infinite) of Weak Learners.

- The original Boosting Algorithm was proposed as an answer to a theoretical question in PAC learning. [The Strength of Weak Learnability; Schapire, 89]

- Consequently, Boosting has interesting theoretical implications, e.g., on the relations between PAC learnability and compression.
 - If a concept class is efficiently PAC learnable then it is efficiently PAC learnable by an algorithm whose required memory is bounded by a polynomial in n, size c and log(1/\(\varepsilon\)).
 - There is no concept class for which efficient PAC learnability requires that the entire sample be contained in memory at one time – there is always another algorithm that “forgets” most of the sample.
However, the key contribution of Boosting has been practical, as a way to compose a good learner from many weak learners.

It is a member of a family of Ensemble Algorithms, but has stronger guarantees than others.

A Boosting demo is available at http://cseweb.ucsd.edu/~yfreund/adaboost/

Example

Theory of Boosting
 - Simple & insightful
Boosting Motivation

Example: “How May I Help You?”

 gef: automatically categorize type of call requested by phone customer
(Collect, CallingCard, PersonToPerson, etc.)

- yes I’d like to place a collect call long distance please (Collect)
- operator I need to make a call but I need to bill it to my office (ThirdNumber)
- yes I’d like to place a call on my master card please (CallingCard)
- I just called a number in sioux city and I musta rang the wrong number because I got the wrong party and I would like to have that taken off of my bill (BillingCredit)

observation:

- easy to find “rules of thumb” that are “often” correct
 - e.g.: “IF ‘card’ occurs in utterance THEN predict ‘CallingCard’ ”
- hard to find single highly accurate prediction rule
The Boosting Approach

Algorithm
- Select a small subset of examples
- Derive a rough rule of thumb
- Examine 2nd set of examples
- Derive 2nd rule of thumb
- Repeat T times
- Combine the learned rules into a single hypothesis

Questions:
- How to choose subsets of examples to examine on each round?
- How to combine all the rules of thumb into single prediction rule?

Boosting
- General method of converting rough rules of thumb into highly accurate prediction rule
Theoretical Motivation

- “Strong” PAC algorithm:
 - for any distribution
 - $\forall \epsilon, \delta > 0$
 - Given polynomially many random examples
 - Finds hypothesis with error $\leq \epsilon$ with probability $\geq (1-\delta)$

- “Weak” PAC algorithm
 - Same, but only for some $\epsilon \leq \frac{1}{2} - \gamma$

- [Kearns & Valiant ’88]:
 - Does weak learnability imply strong learnability?
 - Anecdote: the importance of the distribution free assumption
 - It does not hold if PAC is restricted to only the uniform distribution, say
History

- [Schapire ’89]:
 - First provable boosting algorithm
 - Call weak learner three times on three modified distributions
 - Get slight boost in accuracy
 - apply recursively

- [Freund ’90]:
 - “Optimal” algorithm that “boosts by majority”

- [Drucker, Schapire & Simard ’92]:
 - First experiments using boosting
 - Limited by practical drawbacks

- [Freund & Schapire ’95]:
 - Introduced “AdaBoost” algorithm
 - Strong practical advantages over previous boosting algorithms

AdaBoost was followed by a huge number of papers and practical applications

Some lessons for Ph.D. students
A Formal View of Boosting

- Given training set \((x_1, y_1), \ldots, (x_m, y_m)\)
- \(y_i \in \{-1, +1\}\) is the correct label of instance \(x_i \in X\)
- For \(t = 1, \ldots, T\)
 - Construct a distribution \(D_t\) on \(\{1, \ldots, m\}\)
 - Find weak hypothesis (“rule of thumb”)
 \(h_t : X \rightarrow \{-1, +1\}\)
 with small error \(\epsilon_t\) on \(D_t\):
 \[\epsilon_t = \Pr_{D_t} [h_t (x_i) \neq y_i]\]
- Output: final hypothesis \(H_{\text{final}}\)
Adaboost

- Constructing D_t on \{1, \ldots, m\}:
 - $D_1(i) = 1/m$
 - Given D_t and h_t:
 - $D_{t+1} = \frac{D_t(i)}{z_t} \times e^{-\alpha_t}$ if $y_i = h_t(x_i)$
 - $D_{t+1} = \frac{D_t(i)}{z_t} \times e^{+\alpha_t}$ if $y_i \neq h_t(x_i)$
 - where $z_t = \text{normalization constant}$
 - and
 - $\alpha_t = \frac{1}{2} \ln\left\{ \frac{(1 - \epsilon_t)}{\epsilon_t} \right\}$

- Final hypothesis: $H_{\text{final}}(x) = \text{sign} \left(\sum_t \alpha_t h_t(x) \right)$

Notes about α_t:
- Positive due to the weak learning assumption
- Examples that we predicted correctly are demoted, others promoted
- Sensible weighting scheme: better hypothesis (smaller error) \rightarrow larger weight

Think about unwrapping it all the way to $1/m$
A Toy Example

D_1
Round 1

\hat{h}_1

D_2

$\epsilon_1 = 0.30$
$\alpha_1 = 0.42$

Boosting
Round 2

A Toy Example

\[\varepsilon_2 = 0.21 \]
\[\alpha_2 = 0.65 \]
Round 3

$\varepsilon_3 = 0.14$
$\alpha_3 = 0.92$
A Toy Example

Final Hypothesis

\[H_{\text{final}} = \text{sign}(0.42 + 0.65 + 0.92) \]

A cool and important note about the final hypothesis: it is possible that the combined hypothesis makes no mistakes on the training data, but boosting can still learn, by adding more weak hypotheses.
1. Why is the theorem stated in terms of minimizing training error? Is that what we want?

2. What does the bound mean?

\[\epsilon_t (1 - \epsilon_t) = (1/2 - \gamma_t)(1/2 + \gamma_t) = 1/4 - \gamma_t^2 \]

\[1 - (2\gamma_t)^2 \leq \exp(- (2\gamma_t)^2) \]

Need to prove only the first inequality, the rest is algebra.

\[\text{训练误差}(H_{\text{final}}) \leq \prod_t \left[2\sqrt{\epsilon_t (1 - \epsilon_t)} \right] \]

\[= \prod_t \sqrt{1 - 4\gamma_t^2} \]

\[\leq \exp \left(-2 \sum_t \gamma_t^2 \right) \]

so: if \(\forall t: \gamma_t \geq \gamma > 0 \)

then \(\text{训练误差}(H_{\text{final}}) \leq e^{-2\gamma^2 T} \)

adaptive:

- does not need to know \(\gamma \) or \(T \) a priori
- can exploit \(\gamma_t \gg \gamma \)
AdaBoost Proof (1)

- let $f(x) = \sum_t \alpha_t h_t(x) \Rightarrow H_{\text{final}}(x) = \text{sign}(f(x))$

- Step 1: unwrapping recursion:

$$D_{\text{final}}(i) = \frac{1}{m} \cdot \frac{\exp\left(-y_i \sum_t \alpha_t h_t(x_i)\right)}{\prod_t Z_t}$$

$$= \frac{1}{m} \cdot \frac{e^{-y_i f(x_i)}}{\prod_t Z_t}$$

Need to prove only the first inequality, the rest is algebra.
AdaBoost Proof (2)

- **Step 2:** \(\text{training error}(H_{\text{final}}) \leq \prod_t Z_t \)

- **Proof:**
 - \(H_{\text{final}}(x) \neq y \Rightarrow yf(x) \leq 0 \Rightarrow e^{-yf(x)} \geq 1 \)
 - So:
 \[
 \text{training error}(H_{\text{final}}) = \frac{1}{m} \sum_i \begin{cases}
 1 & \text{if } y_i \neq H_{\text{final}}(x_i) \\
 0 & \text{else}
 \end{cases}
 \leq \frac{1}{m} \sum_i e^{-y_if(x_i)}
 \]
 - Using Step 1
 \[
 = \sum_i D_{\text{final}}(i) \prod_t Z_t
 = \prod_t Z_t
 \]

Always holds for mistakes (see above)

Using Step 1

\(D \) is a distribution over the \(m \) examples

The definition of training error
Splitting the sum to “mistakes” and no-mistakes

The definition of ϵ_t

The definition of α_t

A strong assumption due to the “for all distributions”. But – works well in practice

By definition of Z_t; it’s a normalization term

Steps 2 and 3 together prove the Theorem.

\Rightarrow The error of the final hypothesis can be as low as you want.
Unlike Boosting the accuracy (ε), Boosting the confidence (δ) is easy.

Let’s fix the accuracy parameter to ε.

Suppose that we have a learning algorithm L such that for any target concept $c \in C$ and any distribution D, L outputs h s.t. $\text{error}(h) < \varepsilon$ with confidence at least $1 - \delta_0$, where $\delta_0 = 1/q(n, \text{size}(c))$, for some polynomial q.

Then, if we are willing to tolerate a slightly higher hypothesis error, $\varepsilon + \gamma$ ($\gamma > 0$, arbitrarily small) then we can achieve arbitrary high confidence $1 - \delta$.
Idea: Given the algorithm \(L \), we construct a new algorithm \(L' \) that simulates algorithm \(L \) \(k \) times (\(k \) will be determined later) on independent samples from the same distribution.

Let \(h_1, \ldots, h_k \) be the hypotheses produced. Then, since the simulations are independent, the probability that all of \(h_1, \ldots, h_k \) have error \(> \varepsilon \) is as most \((1-\delta_0)^k \). Otherwise, at least one \(h_j \) is good.

Solving \((1-\delta_0)^k < \delta/2 \) yields that value of \(k \) we need,

\[
k > \frac{1}{\delta_0} \ln(2/\delta)
\]

There is still a need to show how \(L' \) works. It would work by using the \(h_i \) that makes the fewest mistakes on the sample \(S \); we need to compute how large \(S \) should be to guarantee that it does not make too many mistakes. [Kearns and Vazirani’s book]
Summary of Ensemble Methods

- Boosting
- Bagging
- Random Forests
Boosting

- Initialization:
 - Weigh all training samples equally

- Iteration Step:
 - Train model on (weighted) train set
 - Compute error of model on train set
 - Increase weights on training cases model gets wrong!!!

- Typically requires 100’s to 1000’s of iterations

- Return final model:
 - Carefully weighted prediction of each model
Boosting: Different Perspectives

- Boosting is a maximum-margin method (Schapire et al. 1998, Rosset et al. 2004)
 - Trades lower margin on easy cases for higher margin on harder cases

- Boosting is an additive logistic regression model (Friedman, Hastie and Tibshirani 2000)
 - Tries to fit the logit of the true conditional probabilities

- Boosting is an *equalizer* (Breiman 1998) (Friedman, Hastie, Tibshirani 2000)
 - Weighted proportion of times example is misclassified by base learners tends to be the same for all training cases

- Boosting is a linear classifier, but does not give well calibrated probability estimate.
Bagging predictors is a method for generating multiple versions of a predictor and using these to get an aggregated predictor.

The aggregation averages over the versions when predicting a numerical outcome and does a plurality vote when predicting a class.

The multiple versions are formed by making bootstrap replicates of the learning set and using these as new learning sets.

- That is, use samples of the data, with repetition

Tests on real and simulated data sets using classification and regression trees and subset selection in linear regression show that bagging can give substantial gains in accuracy.

The vital element is the instability of the prediction method. If perturbing the learning set can cause significant changes in the predictor constructed then bagging can improve accuracy.
Example: Bagged Decision Trees

- Draw 100 bootstrap samples of data
- Train trees on each sample \rightarrow 100 trees
- Average prediction of trees on out-of-bag samples

$$\text{Average prediction} = \frac{0.23 + 0.19 + 0.34 + 0.22 + 0.26 + \ldots + 0.31}{\# \text{ Trees}} = 0.24$$
Random Forests (Bagged Trees++)

- Draw **1000+** bootstrap samples of data
- **Draw sample of available attributes at each split**
- Train trees on each sample/attribute set \rightarrow **1000+** trees
- Average prediction of trees on out-of-bag samples

Average prediction

\[
(0.23 + 0.19 + 0.34 + 0.22 + 0.26 + \ldots + 0.31) / \# \text{ Trees} = 0.24
\]