
ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

There is a hidden conjunctions the learner is to learn

The number of conjunctions:

log(|C|) = n

The elimination algorithm makes n mistakes
Ç Learn from positive examples; eliminate active literals.

k-conjunctions:
Ç Assume that only k<<n attributes occur in the disjunction

The number of k-conjunctions:
Ç log(|C|) =

Ç Can we learn efficiently with this number of mistakes ?

n3

Learning Conjunctions

nk log

kkk nknC 2),(2 º

1

1005432 xxxxxf ØØØØ=

Can mistakes
be bounded
in the non-
finite case?

Can this
bound be
achieved?

Last time:
- Learning Protocols

- Exact (vs. in exact) Learning
- On Line Learning

- # of examplesneeded to learn
- # of mistakesneeded to learn
- Developed ideas on what might be

possible (finite hypothesis classes)

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Representation

Assume that you want to learn conjunctions. Should your hypothesis
space be the class of conjunctions?
Ç Theorem: Given a sample on n attributes that is consistent with a conjunctive

concept, it is NP-hard to find a pure conjunctive hypothesis that is both
consistent with the sample and has the minimum number of attributes.

Ç ώ5ŀǾƛŘ IŀǳǎǎƭŜǊΣ !LWΩууΥ άvǳŀƴǘƛŦȅƛƴƎ Inductive Bias: AI Learning Algorithms and Valiant'sLearning CǊŀƳŜǿƻǊƪέϐ

Same holds for Disjunctions.

Intuition: Reduction to minimum set cover problem.

Ç Given a collection of sets that cover X, define a set of examples so that
learning the best (dis/conj)junction implies a minimal cover.

Consequently, we cannot learn the concept efficiently as a
(dis/con)junction.

But, we will see that we can do that, if we are willing to learn the
concept as a Linear Threshold function.

In a more expressive class, the search for a good hypothesis
sometimes becomes combinatorially easier.

2

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Linear Functions

Disjunctions

At least m of n:

Exclusive-OR:

Non-trivial DNF

3

f (x)=
1 if w1 x1 + w2 x2 +. . . wnxn>= q

0 Otherwise {

y= (x1 Lx2 v) (x1 Lx2)

y= (x1 Lx2) v (x3 Lx4)

y= x1 Ùx3 Ùx5

y= (1Åx1 + 1Åx3 + 1Åx5 >= 1)

y= at least 2 of {x1 , x3 , x5}

y= (1Åx1 + 1Åx3 + 1Åx5 >=2)

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт 4

w ¢x = 0

- --
- -

-

-
- -

- -

- -

-

-

w ¢x = q

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Footnote About the Threshold

5

On previous slide, Perceptron has no threshold

.ǳǘ ǿŜ ŘƻƴΩǘ ƭƻǎŜ ƎŜƴŜǊŀƭƛǘȅΥ

Ú

q-Ú

"Ú

,

1,

ww

xxx

0x

1x

q=¶xw

0x

1x

q 01,, =¶- xw q

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Perceptron learning rule

On-line, mistake driven algorithm.

Rosenblatt(1959) suggested that when a target
output value is provided for a single neuron with
fixed input, it can incrementally change weights and
learn to produce the output using the Perceptron
learning rule

(Perceptron == Linear Threshold Unit)

6

1
2

6

3
4
5

7

6w

1w

ä
T

y

1x

6x

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Perceptron learning rule

We learn f:X­{-1,+1} represented as f =sgn{w¶x)

Where X= {0,1}n or X= Rn and wÍRn

Given Labeled examples: {(x1, y1), (x2, y2ύΣΧόxm, ym)}

7

1. Initialize w=0Í

2. Cycle through all examples

a. Predict the label of instance x to beȅΩ Ґ sgn{w¶x)

b. If ȅΩ̧y, updatethe weight vector:

w = w + r y x (r - a constant, learning rate)

hǘƘŜǊǿƛǎŜΣ ƛŦ ȅΩҐȅΣ ƭŜŀǾŜ ǿŜƛƎƘǘǎ ǳƴŎƘŀƴƎŜŘΦ

n
R

Mistake driven
algorithms

Analysis via
mistake bound

Can mistakes
be bounded in
the non-finite
case?

Can we
achieve good
bounds?

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Perceptron in action

9

ī1 ī0.5 0 0.5 1
ī1

ī0.5

0

0.5

1

ī1 ī0.5 0 0.5 1
ī1

ī0.5

0

0.5

1

ī1 ī0.5 0 0.5 1
ī1

ī0.5

0

0.5

1

wx = 0
Current
decision

boundary

w
Current weight

vector

x (with y = +1)
next item to be

classified

x as a vector

x as a vector added to
w

wx = 0
New

decision
boundary

w
Newweight

vector

(Figures from Bishop 2006)

Positive
Negative

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Perceptron in action

10

ī1 ī0.5 0 0.5 1
ī1

ī0.5

0

0.5

1

ī1 ī0.5 0 0.5 1
ī1

ī0.5

0

0.5

1

ī1 ī0.5 0 0.5 1
ī1

ī0.5

0

0.5

1

wx = 0
Current
decision

boundary

w
Current weight

vector

x (with y = +1)
next item to be

classified
x as a vector

x as a vector added to
w

wx = 0
New

decision
boundary

w
Newweight

vector

(Figures from Bishop 2006)

Positive
Negative

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Perceptron learning rule

If x isBoolean,onlyweightsof activefeatures
areupdated
Why is this important?

11

1. Initialize w=0Í

2. Cycle through all examples

a. Predict the label of instance x to beȅΩ Ґ sgn{w¶x)

b. If ȅΩ̧y, updatethe weight vector to

w = w + r y x (r - a constant, learning rate)

hǘƘŜǊǿƛǎŜΣ ƛŦ ȅΩҐȅΣ ƭŜŀǾŜ ǿŜƛƎƘǘǎ ǳƴŎƘŀƴƎŜŘΦ

n
R

1/2
x)}exp{-(w1

1
 to equivalent is 0xw >

¶+
>¶

ö
ö
ö

÷

õ

æ
æ
æ

ç

å

-

+
ö
ö
ö

÷

õ

æ
æ
æ

ç

å

=
ö
ö
ö

÷

õ

æ
æ
æ

ç

å

-

+

+=+

1

0

1

1

1

3

2

1

3

2

1

1

w

w

w

w

w

w

ii
xww

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Perceptron Learnability

hōǾƛƻǳǎƭȅ ŎŀƴΩǘ ƭŜŀǊƴ ǿƘŀǘ ƛǘ ŎŀƴΩǘ represent (???)
Ç Only linearly separable functions

Minskyand Papert(1969)wrote an influential book
ŘŜƳƻƴǎǘǊŀǘƛƴƎ tŜǊŎŜǇǘǊƻƴΩǎ ǊŜǇǊŜǎŜƴǘŀǘƛƻƴŀƭ
limitations
Ç tŀǊƛǘȅ ŦǳƴŎǘƛƻƴǎ ŎŀƴΩǘ ōŜ ƭŜŀǊƴŜŘ ό·hwύ
Ç In vision, if patterns are represented with local features,
ŎŀƴΩǘ ǊŜǇǊŜǎŜƴǘ ǎȅƳƳŜǘǊȅΣ ŎƻƴƴŜŎǘƛǾƛǘȅ

Research on Neural Networks stopped for years

Rosenblatt himself (1959) asked,

ω ά²Ƙŀǘ ǇŀǘǘŜǊƴ ǊŜŎƻƎƴƛǘƛƻƴ ǇǊƻōƭŜƳǎ Ŏŀƴ ōŜ ǘǊŀƴǎŦƻǊƳŜŘ ǎƻ
ŀǎ ǘƻ ōŜŎƻƳŜ ƭƛƴŜŀǊƭȅ ǎŜǇŀǊŀōƭŜΚέ

12

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт 13

(x1 Lx2) v (x3 Lx4) y1 Ly2

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Perceptron Convergence

Perceptron Convergence Theorem:

If there exist a set of weights that are consistent with
the data (i.e., the data is linearly separable), the
perceptron learning algorithm will converge
Ç How long would it take to converge ?

Perceptron Cycling Theorem:

If the training data is not linearly separable the
perceptron learning algorithm will eventually repeat
the same set of weights and therefore enter an
infinite loop.
Ç How to provide robustness, more expressivity ?

14

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Perceptron

15

Just to make sure we understand
that we learn both w and µ

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Perceptron: Mistake Bound
Theorem

Maintains a weight vector wÍRN, w0=όлΣΧΣлύΦ

Upon receiving an example x ÍRN

Predicts according to the linear threshold function
ǿωȄ²0.

Theorem [Novikoff,1963] Let (x1; y1ύΣΧΣΥ όxt; yt), be a
sequence of labeled examples with xiÍ< N, ||xi||¢R and
yiÍ{-1,1} for all i. Let uÍ< N,g> 0 be such that,

|| u|| = 1 and yi u ω xi²gfor all i.

Then Perceptron makes at mostR2 / g2 mistakes on
this example sequence.

(see additional notes)

16

Complexity Parameter

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Perceptron-Mistake Bound

17

Proof: Let vk be the hypothesis before the k- th mistake. Assume
that the k- th mistake occurs on the input example (xi, y i).

Assumptions

v1 = 0

||u|| = 1

yi u Å xi²g

k < R2 / g2

1. Note that the bound does not
depend on the dimensionality
nor on the number of examples.

2. Note that we place weight vectors
and examplesin the same space.

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Robustness to Noise

In the case of non-separable data , the extent to which a data
point fails to have margin ° via the hyperplanew can be
quantified by a slack variable

»i= max(0, ° ҍ yi w¢xi).
Observe that when »i = 0, the example xi has margin at least ° .
Otherwise, it grows linearly with ҍ yi w¢xi

Denote: D2 = [ä{»i
2}]1/2

Theorem: The perceptron is

guaranteedto make no more than

((R+D2)/°)2 mistakes on any sequence

of examples satisfying ||xi||
2<R

Perceptron is expected to

have some robustness to noise.

18

- --- -
-

-
- -

- -

- -

-

-

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Perceptron for Boolean Functions

How many mistakes will the Perceptron algorithms
make when learning a k-disjunction?

Try to figure out the bound

Find a sequence of examples that will cause
Perceptron to make O(n)mistakes on k-disjunction on
n attributes.

(Where is n coming from?)

19

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Winnow Algorithm

The Winnow Algorithm learns Linear Threshold
Functions.

For the class of disjunctions:
Ç instead of demotionwe can use elimination.

20

(demotion) 1)x (if /2w w,xbut w 0f(x) If

)(promotion 1)x (if 2w w,xwbut 1f(x) If

nothing do :mistake no If

xw iff 1 is Prediction

 w :Initialize

iii

iii

i

=«²¶=

=«<¶=

²¶

==

q

q

q

q 1n;

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Winnow - Example

21

)hypothesis (final

 version)on(eliminati

)1024,1024,...,32,1,0,0,0,1024,1024(

..........................

 mistake)256,...,0,..0,1,512(),0..,111.0,1,0,0(

ok)256,....,256,256,1,512(),1...,0,1,0,1(

)256,....,256,256,1,512(

 variable)goodeach (for log(n/2)

 mistake)2...,2,4,1,8(),1..,0,0,1,0,1(

 mistake)1...,2,2,1,4(),0..,0,1,1,0,1(

mistake)1,....,1,2(),0,...,0,0,1(

ok)1,....,1,1(),0,,,,111,0,0(

ok)1,....,1,1(-,0,...,0), 0(

ok)1,...,1,1(),(1,1,...,1

)1,...,1,1(;1024 :Initialize

1024102321

=

=²¶>-<

=²¶>+<

=

=<¶>+<

=<¶>+<

=<¶>+<

=<¶>-<

=<¶><

=²¶>+<

==

ÙÙÙ=

w

wxw

wxw

w

wxw

wxw

wxw

wxw

wxw

wxw

w

xxxxf

q

q

q

q

q

q

q

q

q Notice that the
same algorithm will
learn a conjunction
over these variables
όǿҐόнрсΣнрсΣлΣΧонΣ
ΧнрсΣнрсύ ύ

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Winnow ςMistake Bound

Claim: Winnow makes O(k log n) mistakes on k-
disjunctions

u - # of mistakes on positive examples (promotions)

v - # of mistakes on negative examples (demotions)

1. u < k log(2n)
A weight that corresponds to a good variable is only promoted.

When these weights get to n there will be no more mistakes on
positives.

22

(demotion) 1)x (if /2w w,xbut w 0f(x) If

)(promotion 1)x (if 2w w,xwbut 1f(x) If

nothing do :mistake no If

xw iff 1 is Prediction

 w :Initialize

iii

iii

i

=«²¶=

=«<¶=

²¶

== 1n;

q

q

q

q

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Winnow ςMistake Bound

Claim: Winnow makes O(k log n) mistakes on k-
disjunctions

u - # of mistakes on positive examples (promotions)

v - # of mistakes on negative examples (demotions)

2. v < 2(u + 1)
Total weight TW=n initially

Mistake on positive: TW(t+1) < TW(t) + n

Mistake on negative: TW(t+1) < TW(t) - n/2

0 < TW < n + u n - v n/2 Ý v < 2(u+1)

23

(demotion) 1)x (if /2w w,xbut w 0f(x) If

)(promotion 1)x (if 2w w,xwbut 1f(x) If

nothing do :mistake no If

xw iff 1 is Prediction

 w :Initialize

iii

iii

i

=«²¶=

=«<¶=

²¶

== 1n;

q

q

q

q

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Winnow ςMistake Bound

Claim: Winnow makes O(k log n) mistakes on k-
disjunctions

u - # of mistakes on positive examples (promotions)

v - # of mistakes on negative examples (demotions)

of mistakes: u + v < 3u + 2 = O(k log n)

24

(demotion) 1)x (if /2w w,xbut w 0f(x) If

)(promotion 1)x (if 2w w,xwbut 1f(x) If

nothing do :mistake no If

xw iff 1 is Prediction

 w :Initialize

iii

iii

i

=«²¶=

=«<¶=

²¶

== 1n;

q

q

q

q

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Summary of Algorithms

Examples: x 2 {0,1}n; or x 2 Rn (indexed by k) ; Hypothesis: w 2 Rn

Prediction: y 2 {-1,+1}: Predict: y = 1 iff w¢x >µ

Update: Mistake Driven

Additiveweight update algorithm: w Ã w +r yk xk

Ç (Perceptron, Rosenblatt, 1958. Variations exist)

Ç In the case of Boolean features:

Multiplicativeweight update algorithm wi Ã wi exp{yk xi}

(Winnow, Littlestone, 1988. Variations exist)

Ç Boolean features:

25

(demotion) 1)x (if 1- w w,xbut w 0Class If

)(promotion 1)x (if 1 w w,xwbut 1Class If

iii

iii

=«²¶=

=+«¢¶=

q

q

(demotion) 1)x (if /2w w,xbut w 0Class If

)(promotion 1)x (if 2w w,xwbut 1Class If

iii

iii

=«²¶=

=«¢¶=

q

q

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Practical Issues and Extensions

There are many extensions that can be made to these basic
algorithms.

Some are necessary for them to perform well

Ç Regularization (next; will be motivated in the next section, COLT)

Some are for ease of use and tuning

Ç Converting the output of a Perceptron/Winnow to a conditional
probability

P(y = +1 |x) = [1+ exp(-Awx)]-1

Ç Can tune the parameter A

Multiclass classification (later)

Key efficiency issue: Infinite attribute domain

26

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

I Regularization Via Averaged
Perceptron

An Averaged Perceptron Algorithm is motivated by the following
considerations:

Ç Every Mistake-Bound Algorithm can be converted efficiently to a PAC
algorithm ςto yield global guarantees on performance.

Ç In the mistake bound model:

Á We ŘƻƴΩǘ ƪƴƻǿ ǿƘŜƴ ǿŜ ǿƛƭƭ ƳŀƪŜ ǘƘŜ mistakes.

Ç In the PAC model:

Á Dependence is on number of examples seen and not number of mistakes.

Á Which hypothesis will you chooseΧΚΚ

Á Being consistent with more examples is better

Toconvert a given Mistake Bound algorithm (into a global guarantee algorithm):

Ç Wait for a long stretch w/o mistakes (there must be one)

Ç Use the hypothesis at the end of this stretch.

Ç Its PAC behavior is relative to the length of the stretch.

Averaged Perceptron returns a weighted average of a number of
earlier hypotheses; the weights are a function of the length of no-
mistakes stretch.

28

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

I Regularization Via Averaged
Perceptron (or Winnow)

Training:

[m: #(examples); k: #(mistakes) = #(hypotheses); ci: consistency count for vi]

Input: a labeled training set {(x1, y1ύΣΧόxm, ym)}

Number of epochs T

Output: a list of weighted perceptrons{(v1, c1ύΣΧΣόvk, ck)}

Initialize: k=0; v1 = 0, c1 = 0

Repeat T times:

Ç For i =мΣΧƳΥ

Ç /ƻƳǇǳǘŜ ǇǊŜŘƛŎǘƛƻƴ ȅΩ Ґ ǎƛƎƴόvk ¢xi)

Ç LŦ ȅΩ Ґ ȅΣ ǘƘŜƴ ck = ck + 1

else: vk+1= vk + yi x ; ck+1= 1; k = k+1

Prediction:

Given: a list of weighted perceptrons{(v1, c1ύΣΧόvk, ck)} ; a new example x

Predictthe label(x) as follows:

y(x)= sign [ä1, k ci sign(vi ¢x)]

29

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

II Perceptron with Margin

Thick Separator (aka as Perceptron with Margin)
(Applies both for Perceptron and Winnow)

Promote if:

Ç w x -q< g

Demote if:

Ç w x -q> g

30

w ¢x = 0

- --
- -

-

-
- -

- -

- -

-

-

w ¢x = q

Note: gis a functional margin. Its effect could disappear as w grows.
Nevertheless, this has been shown to be a very effective algorithmic addition.
(Grove & Roth 98,01; Karovet. al 97)

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Other Extensions

Threshold relative updating (Aggressive Perceptron)

Equivalent to updating

on the same example

multiple times

31

w«w+r x

r =
q-w¶x

x¶x

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

SNoW(also in LBJava)

Several of these extensions (and a couple more) are
implemented in the SNoWlearning architecture that supports
several linear update rules (Winnow, Perceptron, naïve Bayes)

Supports
Ç Regularization(averaged Winnow/Perceptron; Thick Separator)

Ç Conversion to probabilities

Ç Automatic parameter tuning

Ç True multi-class classification

Ç Feature Extraction and Pruning

Ç Variable size examples

Ç Good support for large scale domains in terms of number of examples and
number of features.

Ç Very efficient

Ç Many other options

[Download from: http:// cogcomp.cs.illinois.edu/page/software]

32

http://cogcomp.cs.illinois.edu/page/software

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Winnow - Extensions

This algorithm learns monotone functions

For the general case:
Ç Duplicate variables (down side?)

Ç For the negation of variable x, introduce a new variable y.

Ç Learn monotone functions over 2n variables

Balanced version:
Ç Keep two weights for each variable; effective weight is the

difference

Ç ²ŜΩƭƭ ŎƻƳŜ ōŀŎƪ ǘƻ ǘƘƛǎ ƛŘŜŀ ǿƘŜƴ ǘŀƭƪƛƴƎ ŀōƻǳǘ ƳǳƭǘƛŎƭŀǎǎΦ

33

(demotion) 1 where2
2

1
 ,)(but 0)(If

)(promotion 1 where
2

1
 2 ,)(but 1)(If

:Rule Update

=««²¶-=

=««¢¶-=

--++-+

--++-+

iiiii

iiiii

xwwwwxwwxf

xwwwwxwwxf

q

q

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Winnow ςA Robust Variation

Winnow is robust in the presence of various kinds of
noise.
Ç (classification noise, attribute noise)

Moving Target:
Ç The target function changes with time.

Importance:
Ç sometimes we learn under some distribution but test under

a slightly different one. (e.g., natural language applications)

Ç The algorithm we develop provides a good insight into
issues of Adaptation

34

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Winnow ςA Robust Variation

Modeling:
Ç !ŘǾŜǊǎŀǊȅΩǎ turn: may change the target concept by adding

or removing some variable from the target disjunction.

ÁCost of each addition move is 1.

Ç [ŜŀǊƴŜǊΩǎ turn: makes prediction on the examples given, and
is then told the correct answer (according to current target
function)

Ç Winnow-RΥ {ŀƳŜ ŀǎ ²ƛƴƴƻǿΣ ƻƴƭȅ ŘƻŜǎƴΩǘ ƭŜǘ ǿŜƛƎƘǘǎ Ǝƻ
below 1/2

Ç Claim: Winnow-R makes O(c log n) mistakes, (c - cost of
adversary) (generalization of previous claim)

35

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Winnow R ςMistake Bound

u - # of mistakes on positive examples (promotions)

v - # of mistakes on negative examples (demotions)

2. v < 2(u + 1)
Total weight TW=n initially

Mistake on positive: TW(t+1) < TW(t) + n

Mistake on negative: TW(t+1) < TW(t) - n/4

0 < TW < n + u n - v n/4 Ý v < 4(u+1)

36

Good project:

Push weights
to 0 (simple
hypothesis, L1
regularization
(Lasso)) vs.
bounding them
away from zero

ςimpact on
adaptation

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Administration

Registration - Done

Hw2is due tomorrow

Hw3will be released tomorrow

37

QuestionsTODAY:

Å Administration: HW, Projects

Å Flipped Class

Å Continuing with On-Line Learning

http://l2r.cs.illinois.edu/~danr/Teaching/CS446-17/Hw/HW-hw2/hw2.pdf
http://l2r.cs.illinois.edu/~danr/Teaching/CS446-17/Hw/HW-hw3/hw3.pdf

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Features; feature types; instances
space transformation.

Stopping Criterion left ambiguous
deliberately. Multiple options;
think and make a decision (e.g.,
based on loss; based on error).

HW2

38

Decision Trees, Expressivity of Models, Features

Key Reporting Module (RM):
Ç Train a model on a given Training Set

Ç Report 5-fold cross validation

Ç Report results on a supplied TestSet.

(a) Convert Data to Feature Representation (given; can be augmented)
Ç 2000 * 270 dimensions

(b) Program SGD; run RM

(c) Use Wekato Learn DT using ID2; run RM.

(d) Use Wekato learn DT(depth=4) and DT(depth=8); run RM

(e) Use Wekato generate 100 different DT(d=4)

Ç Generate 100 dimensional data, each dimension is the prediction of a DT

Ç Run (b) on the new data

Compare algorithms from b,c,d,e.

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Projects

Projects proposals are due on March 10 2017
Within a week we will give you an approval to continue with your project
along with comments and/or a request to modify/augment/do a different
project. There will also be a mechanism for peer comments.

We encourage team projects ςa team can be up to 3 people.

Please start thinking and working on the project now.
Your proposal is limited to 1-2 pages, but needs to include references
and, ideally, some of the ideas you have developed in the direction of the
project (maybe even some preliminary results).
Any project that has a significant Machine Learning component is good.
You can do experimental work,theoretical work, a combination of both
or a critical survey of results in some specialized topic.
The work hasto include some reading. Even if you do not do a survey, you
must read (at least) two related papers or book chapters and relate your
work to it.
Originality is not mandatory but is encouraged.
Try to make it interesting!

39

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Examples

Fake News Challenge :- http://www.fakenewschallenge.org/

KDD Cup 2013:
Ç "Author-Paper Identification": given an author and a small set of papers, we are asked to

identify which papers are really written by the author.

Á https://www.kaggle.com/c/kdd-cup-2013-author-paper-identification-challenge

Ç ά!ǳǘƘƻǊ tǊƻŦƛƭƛƴƎέΥ given a set of document, profile the author: identification, gender,
ƴŀǘƛǾŜ ƭŀƴƎǳŀƎŜΣ ΧΦ

Caption Control: Is it gibberish? Spam? High quality text?
Ç Adapt an NLP program to a new domain

Work on making learned hypothesis (e.g., linear threshold functions, NN)
more comprehensible
Ç Explain the prediction

Develop a (multi-modal) People Identifier
Compare Regularization methods: e.g., Winnow vs. L1 Regularization
Large scale clustering of documents + name the cluster
Deep Networks: convert a state of the art NLP program to a deep
network, efficient, architecture.
Try to prove something

40

https://urldefense.proofpoint.com/v2/url?u=http-3A__www.fakenewschallenge.org_&d=DwMFAg&c=8hUWFZcy2Z-Za5rBPlktOQ&r=4vDcLc57cD397QaRxR0yOZWu-Gg0KM96wcN0Jci1clw&m=9N8h2Wns4dC-DEEP0V-pObXSyU3Zl4uG51ahA1VuScE&s=LWaUdjsTWw0Y1xGXjw1TCh2YdQAXX-PgPe8hD0Yup7A&e=
https://www.kaggle.com/c/kdd-cup-2013-author-paper-identification-challenge

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

What have you learned
(on your own)

The feasibility of Mistake Bounds
Ç Con

Ç Halving

Ç Perceptron

Algorithms
Ç Perceptron

Á+ Analysis

Ç Winnow

Á+ Analysis (special case)

ÁThe general case

Algorithms could behave differently
Ç Averaged version of Perceptron/Winnow is as good as any

other linear learning algorithm, if not better.

41

ÅWhy do I include Perceptron
in this bullet?

Å²ƘŀǘΩǎ ƛƴǘŜǊŜǎǘƛƴƎ ŀōƻǳǘ ƛǘΚ

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

General Stochastic Gradient
Algorithms

Given examples {z=(x,y)}1, m from a distribution over XxY, we are
trying to learn a linear function, parameterized by a weight vector w,
so that we minimize the expected risk function

J(w) = Ez Q(z,w) ~=~ 1/m ä1, m Q(zi, wi)
In Stochastic Gradient Descent Algorithms we approximate this
minimization by incrementally updating the weight vector w as
follows:

wt+1 = wtςrt gw Q(zt, wt) = wtςrt gt

Where g_t = gw Q(zt, wt) is the gradient with respect to w at time t.

The difference between algorithms now amounts to choosing a
different loss function Q(z, w)

42

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

wt+1 = wtςrt gw Q(zt, wt) = wtςrt gt

LMS:Q((x, y), w) =1/2 (y ςw ¢x)2

leads to the update rule (Also called ²ƛŘǊƻǿΩǎAdaline):
wt+1 = wt + r (ytςwt ¢xt) xt

Here, even though we make binary predictions based on sign (w ¢x)
we do not take the signof the dot-product into account in the loss.

Another common loss function is:
Hinge loss:
Q((x, y), w) = max(0, 1 - y w ¢x)

This leads to the perceptronupdate rule:

If yi wi ¢xi > 1 (No mistake, by a margin): No update
Otherwise (Mistake, relative to margin): wt+1 = wt + r yt xt

Stochastic Gradient Algorithms

43

w ¢x

Think about the case where x is a
Boolean vector.

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

wt+1 = wtςrt gw Q(zt, wt) = wtςrt gt

(notice that this is a vector, each coordinate (feature) has its own wt,j and gt,j)

So far, we used fixed learning rates r = rt, but this can change.
AdaGradalters the update to adapt based on historical information,
so that frequently occurring features in the gradients get small
learning rates and infrequent features get higher ones.
¢ƘŜ ƛŘŜŀ ƛǎ ǘƻ άƭŜŀǊƴ ǎƭƻǿƭȅέ ŦǊƻƳ ŦǊŜǉǳŜƴǘ ŦŜŀǘǳǊŜǎ ōǳǘ άpay
ŀǘǘŜƴǘƛƻƴέ ǘƻ ǊŀǊŜ ōǳǘ ƛƴŦƻǊƳŀǘƛǾŜ ŦŜŀǘǳǊŜǎ.
5ŜŦƛƴŜ ŀ άǇŜǊ ŦŜŀǘǳǊŜέ ƭŜŀǊƴƛƴƎ ǊŀǘŜ ŦƻǊ ǘƘŜ ŦŜŀǘǳǊŜ j, as:

rt,j = r/(Gt,j)
1/2

whereGt,j = äk=1, t g2
k,j the sum of squares of gradients at feature j

until time t.
Overall, the update rule for Adagradis:

wt+1,j = wt,j - gt,j r/(Gt,j)
1/2

This algorithm is supposed to update weights faster than Perceptron
or LMS when needed.

New Stochastic Gradient
Algorithms

44

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Regularization

The more general formalism adds a regularizationterm to the risk
function, and attempts to minimize:

J(w) = ä1, m Q(zi, wi) + ̧ Ri (wi)
²ƘŜǊŜ w ƛǎ ǳǎŜŘ ǘƻ ŜƴŦƻǊŎŜ άǎƛƳǇƭƛŎƛǘȅέ ƻŦ ǘƘŜ ƭŜŀǊƴŜŘ ŦǳƴŎǘƛƻƴǎΦ

LMS case: Q((x, y), w) =(y ςw ¢x)2

Ç R(w) = || w|| 2
2gives the optimization problem called Ridge Regression.

Ç R(w) = || w|| 1 gives a problem called the LASSO problem

Hinge Loss case: Q((x, y), w) = max(0, 1 - y w ¢x)
Ç R(w) = || w|| 2

2 gives the problem called Support Vector Machines

Logistics Loss case: Q((x,y),w) = log (1+exp{-y w ¢x})
Ç R(w) = || w|| 2

2 gives the problem called Logistics Regression

These are convex optimization problems and, in principle, the same gradient
descent mechanism can be used in all cases.
²Ŝ ǿƛƭƭ ǎŜŜ ƭŀǘŜǊ ǿƘȅ ƛǘ ƳŀƪŜǎ ǎŜƴǎŜ ǘƻ ǳǎŜ ǘƘŜ άǎƛȊŜέ ƻŦ ǿ ŀǎ ŀ ǿŀȅ ǘƻ
ŎƻƴǘǊƻƭ άǎƛƳǇƭƛŎƛǘȅέΦ

45

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Algorithmic Approaches

Focus: Two families of algorithms (one of the on-
line representative)
Ç Additiveupdate algorithms: Perceptron

ÁSVM is a close relative of Perceptron

Ç Multiplicativeupdate algorithms: Winnow

ÁClose relatives: Boosting, Max entropy/Logistic Regression

46

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

How to Compare?

Generalization
Ç (since the representation is the same): How many examples

are needed to get to a given level of accuracy?

Efficiency
Ç How long does it take to learn a hypothesis and evaluate it

(per-example)?

wƻōǳǎǘƴŜǎǎΤ !ŘŀǇǘŀǘƛƻƴ ǘƻ ŀ ƴŜǿ ŘƻƳŀƛƴΣ ΧΦ

47

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Sentence Representation

{Ґ L ŘƻƴΩǘ ƪƴƻǿ whether to laugh or cry

Define a set of features:
Ç features are relations that hold in the sentence

Map a sentence to its feature-based representation
Ç The feature-based representation will give someof the

information in the sentence

Use this as an example to your algorithm

48

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Sentence Representation

{Ґ L ŘƻƴΩǘ ƪƴƻǿ whether to laugh or cry

Define a set of features:
Ç features are propertiesthat hold in the sentence

Conceptually, there are two steps in coming up with a
feature-based representation
Ç What are the information sources available?

Á Sensors: words, order of words, properties (?) of words

Ç What features to construct based on these?

49

Why is this distinction needed?

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Embedding

50

Weather

Whether

523341321 xxxxxxxxx ÙÙ 541 yyy ÙÙ

New discriminator in functionally simpler

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Domain Characteristics

The number of potential features is very large

The instance space is sparse

Decisions depend on a small set of features: the

function space is sparse

Want to learn from a number of examples that is

small relative to the dimensionality

51

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Generalization

Dominated by the sparseness of the function space
Ç Most features are irrelevant

of examples required by multiplicative algorithms
depends mostly on # of relevant features
Ç (Generalization bounds depend on the target ||u||)

of examples required by additive algoirithmsdepends
heavily on sparseness of features space:
Ç Advantage to additive. Generalization depend on input ||x||

Á(Kivinen/Warmuth95).

52

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Which Algorithm to Choose?

Generalization

Ç Multiplicative algorithms:

ÁBounds depend on||u||, the separating hyperplane; i: example #)

ÁMw =2ln n ||u||1
2 maxi||x

(i)||1
2 /mini(u ¢x(i))2

ÁDo not care much about data; advantage with sparse target u

Ç Additive algorithms:

ÁBounds depend on ||x|| (Kivinen/ Warmuth, ó95)

ÁMp = ||u||2
2 maxi||x

(i)||2
2/mini(u ¢x(i))2

ÁAdvantage with few active features per example

53

The l1 norm: ||x||1 = äi|xi| The l2 norm: ||x||2 =(ä1
n|xi|

2)1/2

The lp norm: ||x||p = (ä1
n|xi|

P
)
1/p

The l1 norm: ||x||1 = max
i
|x

i
|

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Examples
Extreme Scenario 1: Assume the u has exactly k active features,
and the other n-k are 0. That is, only k input features are relevant
to the prediction. Then:

||u||2, = k1/2 ; ||u||1, = k ; max ||x||2, = n1/2 ;; max ||x||1 , = 1

We get that: Mp = kn; Mw = 2k2 ln n

Therefore, if k<<n, Winnow behaves much better.

Extreme Scenario 2: Now assume that ǳҐόмΣ мΣΧΦмύ and the
instances are very sparse, the rows of an nxn unit matrix. Then:

||u||2, = n1/2 ; ||u||1, = n ; max ||x||2, = 1 ;; max ||x||1 , = 1

We get that: Mp = n; Mw = 2n2 ln n

Therefore, Perceptron has a better bound.

54

Mw =2ln n ||u||1
2 maxi||x

(i)||1
2 /mini(u ¢x(i))2

Mp = ||u||2
2 maxi||x

(i)||2
2/mini(u ¢x(i))2

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

`

55

Function:At least 10 out of

fixed 100 variables are active

Dimensionality is n
Perceptron,SVMs

n: Total # of Variables (Dimensionality)

Winnow

Mistakes bounds for 10 of 100 of n
#

 o
f
m

is
ta

ke
s
 t
o

 c
o

n
ve

rg
e

n
c
e

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Efficiency

Dominated by the size of the feature space

Most features are functions (e.g. conjunctions) of raw
attributes

Additive algorithms allow the use of Kernels
Ç No need to explicitly generate complex features

Could be more efficient since work is done in the
original feature space, but expressivity is a function
of the kernel expressivity.

56

kn) (x)... (x), (x), (x) n321 >>C­ cccc(),...,,(321 kxxxxX

ä=
i

ii)K(x,xcf(x)

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Functions Can be Made Linear

Data are not linearly separable in one dimension

Not separable if you insist on using a specific class of
functions

x

57

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Blown Up Feature Space

Data are separable in <x, x2> space

x

x2

58

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Making data linearly separable

59

f(x) = 1 iff x1
2 + x2

2 Ò 1

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Making data linearly separable

60

Transform data: x = (x1, x2) => ȄΩ = (x1
2, x2

2)
f(ȄΩύ Ґ м ƛŦŦ ȄΩ1Ҍ ȄΩ2 Җ м

In order to deal with this, we
introduce two new concepts:

Dual Representation

Kernel (& the kernel trick)

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт 61

(demotion) 1)x (if 1- w w,xbut w 0Class If

)(promotion 1)x (if 1 w w,xwbut 1Class If

iii

iii

=«²¶=

=+«¢¶=

q

q

)xxw(Th f(x)

R w:Hypothesis ;{0,1} x :Examples

n

1i ii

nn

ä=
=

ÍÍ

)(q

Let w be an initial weight vector for perceptron. Let (x1,+), (x2,+), (x3,-), (x4,-) be
examples and assume mistakes are made on x1, x2 and x4.
What is the resulting weight vector?

w = w + x1 + x2 - x4

In general, the weight vector w can be written
as a linear combination of examples:

w = ä1,m r ®i yi x
i

Where®i is the number of mistakesmade on xi.

Dual Representation

Note: We care about the dot
product: f(x) = w ¢x =

= (ä1,m r®i yi x
i) ¢x

= ä1,m r®i yi (x
i ¢x)

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Kernel Based Methods

A method to run Perceptron on a very large feature set,
without incurring the cost of keeping a very large weight vector.

Computing the dot product can be done in the original feature
space.

Notice:this pertains only to efficiency: The classifier is identical
to the one you get by blowing up the feature space.

Generalization is still relative to the real dimensionality (or,
related properties).

Kernelswere popularized by SVMs, but many other algorithms
can make use of them (== run in the dual).
Ç Linear Kernels: no kernels; stay in the original space. A lot of applications

actually use linear kernels.

62

äÍ
=

M
 f(x)

z
z))S(z)K(x,(Thq

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт 63

(demotion) 1)x (if 1- w w,xbut w 0Class If

)(promotion 1)x (if 1 w w,xwbut 1Class If

iii

iii

=«²¶=

=+«¢¶=

q

q

)xxw(Th f(x)

R w:Hypothesis ;{0,1} x :Examples

n

1i ii

nn

ä=
=

ÍÍ

)(q

LetI be the set t1,t2,t3Χof monomials (conjunctions) over the
feature space x1, x2Χ xn.

Then we can write a linear function over this new feature space.

)xtw(Th f(x)
i iiäÍ

=
I

)(q

1 (11011)xxx 0 (11010)xx 1 (11010)xxx :Example 42143421 ===

Kernel Base Methods

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт 64

nn R w:Hypothesis ;{0,1} x :Examples ÍÍ

Great Increase in expressivity

Can run Perceptron (and Winnow) but the convergence bound
may suffer exponential growth.

Exponential number of monomials are true in each example.

Also, will have to keep many weights.

)xtw(Th f(x)
i iiäÍ

=
I

)(q

(demotion) 1)x (if 1- w w,xbut w 0Class If

)(promotion 1)x (if 1 w w,xwbut 1Class If

iii

iii

=«²¶=

=+«¢¶=

q

q

Kernel Based Methods

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт 65

Weather

Whether

523341321 xxxxxxxxx ÙÙ 541 yyy ÙÙ

New discriminator in functionally simpler

Embedding

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

The Kernel Trick(1)

Consider the value of w used in the prediction.

Each previous mistake, on example z, makes an
additive contribution of +/-1 to w, iff t(z) = 1.

The value of w is determined by the number of
mistakes on which t() was satisfied.

66

nn R w:Hypothesis ;{0,1} x :Examples ÍÍ

)xtw(Th f(x)
i iiäÍ

=
I

)(q

(demotion) 1)x (if 1- w w,xbut w 0Class If

)(promotion 1)x (if 1 w w,xwbut 1Class If

iii

iii

=«²¶=

=+«¢¶=

q

q

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

ä ä

ä ää

Í
Í

Í
=Í=Í

ù
ú

ø
é
ê

è
=

=ù
ú

ø
é
ê

è
-=

I

I

((

)(

i ii

Mz

i i

1(z)tD,z1(z)tP,z

x)z)ttS(z)(Th

)xt11(Th f(x)
ii

q

q

The Kernel Trick(2)

P ςset of examples on which we Promoted

D ςset of examples on which we Demoted

M = P [D

67

nn R w:Hypothesis ;{0,1} x :Examples ÍÍ

)xtw(Th f(x)
i iiäÍ

=
I

)(q

(demotion) 1)x (if 1- w w,xbut w 0Class If

)(promotion 1)x (if 1 w w,xwbut 1Class If

iii

iii

=«²¶=

=+«¢¶=

q

q

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

ä äÍ
Í

=
M

I

((f(x)
z

i

ii))xz)ttS(z)(Thq

The Kernel Trick(3)

P ςset of examples on which we Promoted

D ςset of examples on which we Demoted

M = P [D

Where S(z)=1 if z ÍP and S(z) = -1 if z ÍD. Reordering:

68

)xtw(Th f(x)
i iiäÍ

=
I

)(q

ä ä

ä ää

Í
Í

Í
=Í=Í

ù
ú

ø
é
ê

è
=

=ù
ú

ø
é
ê

è
-=

I

I

((

)(

i ii

Mz

i i

1(z)tD,z1(z)tP,z

x)z)ttS(z)(Th

)xt11(Th f(x)
ii

q

q

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

äÍ
=

M
 f(x)

z
z))S(z)K(x,(Thq

The Kernel Trick(4)

S(y)=1 if y ÍP and S(y) = -1 if y ÍD.

A mistake on z contributes the value +/-1 to all monomials

satisfied by z. The total contribution of z to the sum is equal

to the number of monomials that satisfy both x and z.

Define a dot product in the t-space:

We get the standard notation:

69

ä äÍ
Í

=
M

I

((f(x)
z

i

ii))xz)ttS(z)(Thq

)xz)tt z)K(x,
i

iiä
Í

=
I

((

)xtw(Th f(x)
i iiäÍ

=
I

)(q

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Kernel Based Methods

What does this representation give us?

We can view this Kernel as the distance between x,z

in the t-space.

But, K(x,z) can be measured in the original space,

without explicitlywriting the t-representation of x, z

70

äÍ
=

M
 f(x)

z
z))S(z)K(x,(Thq

)xz)tt z)K(x,
i

iiä
Í

=
I

((

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

x1x3 (001) = x1x3 (011) = 1

x1 (001) = x1 (011) = 1 ; x3 (001) = x3 (011) = 1

Á (001) = Á (011) = 1

If any other variables appears in the monomial,
ƛǘΩǎ ŜǾŀƭǳŀǘƛƻƴ ƻƴ ȄΣ Ȋ ǿƛƭƭ ōŜ ŘƛŦŦŜǊŜƴǘΦ

Kernel Trick

Consider the space of all 3n monomials (allowing
both positive and negative literals). Then,

When same(x,z) is the number of features that have
the same value for both x and z.

We get:

Example: Take n=3; x=(001), z=(011), monomials of size 0,1,2,3

Proof: let k=same(x,zύΤ ŎƻƴǎǘǊǳŎǘ ŀ άǎǳǊǾƛǾƛƴƎέ ƳƻƴƻƳƛŀƭǎ by:
(1) choosing to include one of these k literals with the right
polarity in the monomial, or (2) choosing to not include it at all.
Monomials with literals outside this set disappear.

71

äÍ
=

M
 f(x)

z
z))S(z)K(x,(Thq)xz)tt z)K(x,

i

iiä
Í

=
I

((

 z)same(x,2 z)K(x, ==ä
ÍIi

ii (x)(z)tt

äÍ
=

M
 f(x)

z

z)same(x,)S(z)(2(Thq

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Example

Take X={x1, x2, x3, x4}

I = The space of all 3n monomials; | I |= 81

Consider x=(1100), z=(1101)
Write down I(x), I(z), the representation of x, z in the I space.

Compute I(x) ¢I(z).

Show that

K(x,z) =I(x) ¢I(z) = äIt i(z) t i(x) = 2same(x,z) = 8

Try to develop another kernel, e.g., where I is the space
of all conjunctions of size 3 (exactly).

72

äÍ
=

M
 f(x)

z
z))S(z)K(x,(Thq)xz)tt z)K(x,

i

iiä
Í

=
I

((

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Implementation: Dual Perceptron

Simply run Perceptron in an on-line mode, but keep
track of the set M.

Keeping the set M allows us to keep track of S(z).

Rather than remembering the weight vector w,
remember the set M (P and D) ςall those examples
on which we made mistakes.

Dual Representation

73

äÍ
=

M
 f(x)

z
z))S(z)K(x,(Thq

)xz)tt z)K(x,
i

iiä
Í

=
I

((

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Administration

Hw3is out.

Projects:
Ç Some of you are thinking about the Fake News Challenge.

Ç Hard, but interesting.

Quizzes:
Ç Most of you are doing it.

Ç Scores are ~95%

Ç vǳŜǎǘƛƻƴǎ ƛƴŘƛŎŀǘŜ ǘƘŀǘ ȅƻǳ ŀǊŜ ǘƘƛƴƪƛƴƎ ŀōƻǳǘ ƛǘΧ

74

Questions

http://l2r.cs.illinois.edu/~danr/Teaching/CS446-17/Hw/HW-hw3/hw3.pdf

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Example: Polynomial Kernel

Prediction with respect to a separating hyper planes (produced by
Perceptron, SVM) can be computed as a function of dot products
of feature based representation of examples.

We want to define a dot product in a highdimensional space.

Given two examples x = (x1, x2Σ Χxn) and y = (y1,y2Σ Χyn) we want
to map them to a high dimensional space[example- quadratic]:

F(x1,x2ΣΧΣxn) = (1, x1ΣΧΣxn, x1
2ΣΧΣȄn

2, x1x2ΣΧΣȄn-1xn)

F(y1,y2ΣΧΣyn) = (1, y1ΣΧΣyn ,y1
2ΣΧΣȅn

2, y1y2ΣΧΣyn-1yn)

and compute the dot product A = F(x)TF(y) [takes time]

Instead, in the original space, compute

B = k(x , y)=[1+ (x1,x2Σ Χxn)T (y1,y2Σ Χyn)]
2

Theorem: A = B (Coefficients do not really matter)

75

Sq(2)

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

We proved that K is a valid kernel by explicitly
showing that it corresponds to a dot product.

Kernels ςGeneral Conditions

Kernel Trick: You want to work with degree 2 polynomial features, Á(x).
Then, your dot product will be in a space of dimensionality n(n+1)/2. The
kernel trick allows you to save and compute dot products in an n
dimensional space.

Can we use any K(.,.)?
Ç A function K(x,z) is a valid kernel if it corresponds to an inner product in some

(perhaps infinite dimensional) feature space.

Take the quadratic kernel: k(x,z) = (xTz)2

Example: Direct construction (2 dimensional, for simplicity):

K(x,z) = (x1 z1 + x2 z2)
2 = x1

2 z1
2 +2x1 z1 x2 z2 + x2

2 z2
2

= (x1
2, sqrt{2} x1x2, x2

2) (z1
2, sqrt{2} z1z2, z2

2)

= ©(x)T ©(z) Ą A dot product in an expanded space.

It is not necessary to explicitly show the feature function Á.

General condition: construct the kernel matrix {k(xi ,zj)}; ŎƘŜŎƪ ǘƘŀǘ ƛǘΩǎ

positive semi definite.

76

äÍ
=

M
 f(x)

z
z))S(z)K(x,(Thq

)xz)tt z)K(x,
i

iiä
Í

=
I

((

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

The Kernel Matrix

The Gram matrix of a set of n vectors S = {x1Χxn} is
the n×n matrix Gwith Gij = xixj

Ç The kernel matrix is the Gram matrix of {˒όx1ύΣ ΧΣ˒(xn)}

Ç (size depends on the # of examples, not dimensionality)

Direct option:
Ç LŦ ȅƻǳ ƘŀǾŜ ǘƘŜ ˒όxiύΣ ȅƻǳ ƘŀǾŜ ǘƘŜ DǊŀƳ ƳŀǘǊƛȄ όŀƴŘ ƛǘΩǎ

easy to see that it will be positive semi-definite)

Indirect:
Ç If you have the Kernel, write down the Kernel matrix Kij, and

show that it is a legitimate kernel, without an explicit
construction of ˒ όxi)

77

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт 78

Kernels ςGeneral Conditions

Called the Gram Matrix.
A is positive semidefinite if zAzT >0
for all nonzero z 2 Rn

In fact, no need to have an explicit representation of Á, only that K satisfies:

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Polynomial kernels

Linear kernel: k(x, z) = xz

Polynomial kernel of degree d: k(x, z) = (xz)d

(only dth-order interactions)

Polynomial kernel up to degree d: k(x, z) = (xz+ c)d (c>0)
(all interactions of order d or lower)

81

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Constructing New Kernels

You can construct new kernels ƪΩ(x, ȄΩ) from
existing ones:

Ç Multiplying k(x, ȄΩ) by a constant c:
ƪΩ(x, ȄΩ) = ck(x, ȄΩ)

Ç Multiplying k(x, ȄΩ) by a function f applied to x andȄΩ:
kΩ(x, ȄΩ) = f(x)k(x, ȄΩ)f(ȄΩ)

Ç Applying a polynomial (with non-negative coefficients) to
k(x, ȄΩ):
kΩ(x, ȄΩ) = P(k(x, ȄΩ)) with P(zύ Ґ ңi aiz

i andaiҗ0

Ç Exponentiating k(x, ȄΩ):
kΩ(x, ȄΩ) = exp(k(x, ȄΩ))

82

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Constructing New Kernels (2)

You can construct kΩ(x, ȄΩ) from k1(x, ȄΩ), k2(x, ȄΩ) by:

Ç Adding k1(x, ȄΩ) and k2(x, ȄΩ):
ƪΩ(x, ȄΩ) = k1(x, ȄΩ) + k2(x, ȄΩ)

Ç Multiplying k1(x, ȄΩ) and k2(x, ȄΩ):
ƪΩ(x, ȄΩ) = k1(x, ȄΩ)k2(x, xΩ)

Also:

Ç LŦ ˒όx) ɴ Rm and km(z, ȊΩ) a valid kernel in Rm,
k(x, xΩύ= kmό˒όxύΣ ˒όxΩύύ is also a valid kernel

Ç If A is a symmetric positive semi-definite matrix,
k(x, xΩύ= xAxΩ is also a valid kernel

In all cases, it is easy to prove these directly by construction.

83

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Gaussian Kernel
(aka radial basis function kernel)

k(x, z) = expόҍόȄ ҍ Ȋύ2/c

Ç (x ҍ z)2: squared Euclidean distance between x and z

Ç Ŏ Ґ ˋ2: a free parameter

Ç ǾŜǊȅ ǎƳŀƭƭ ŎΥ Y Ғ ƛŘŜƴǘƛǘȅ ƳŀǘǊƛȄ όŜǾŜǊȅ ƛǘŜƳ ƛǎ ŘƛŦŦŜǊŜƴǘύ

Ç very large c: K Ғ unit matrix (all items are the same)

Ç k(x, z) Ғ м ǿƘŜƴ x, z close

Ç k(x, zύ Ғ 0 when x, z dissimilar

84

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Gaussian Kernel

k(x, z) = expόҍόȄ ҍ Ȋύ2/c

Is this a kernel?

k(x, z) = expόҍόxҍ z)2κнˋ2

= expόҍόxx + zzҍ 2xz)/н2̀

= expόҍxxκнˋ2 exp(xzκ2̀) exp(ҍzz/н2̀

= f(x) exp(xzκ2̀) f(z)

exp(xzκ2̀) is a valid kernel:
Ç xz is the linear kernel;

Ç we can multiply kernels by constants (1/2̀)

Ç we can exponentiate kernels

Unlike the discrete kernels discussed earlier, here you cannot easily
explicitly blow up the feature space to get an identical representation.

85

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт 87

A method to run Perceptron on a very large feature set,
without incurring the cost of keeping a very large weight vector.

Computing the weight vector can be done in the original feature
space.

Notice: this pertains only to efficiency:the classifier is identical
to the one you get by blowing up the feature space.
Generalizationis still relative to the real dimensionality (or,
related properties).
Kernels were popularized by SVMs but apply to a range of
models, Perceptron, Gaussian Models, PCAs, etc.

Summary ςKernel Based Methods

äÍ
=

M
 f(x)

z
z))S(z)K(x,(Thq

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Efficiency-Generalization
Tradeoff

There is a tradeoff between the computational
efficiencywith which these kernels can be computed
and the generalization abilityof the classifier.

For example, using such kernels the Perceptron
algorithm can make an exponential number of
mistakes even when learning simple functions.
ώYƘŀǊŘƻƴΣwƻǘƘΣ{ŜǊǾŜŘƛƻΣbLt{Ω01; BenDavidet al.]

In addition,computingwith kernelsdependsstrongly
on the number of examples. It turns out that
sometimesworking in the blown up spaceis more
efficient than usingkernels.ώ/ǳƳōȅΣwƻǘƘΣL/a[Ω03]

88

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Explicit & Implicit Kernels:
Complexity

Is it always worthwhile to define kernels and work in
the dual space?

Computationally: [Cumby,Roth2003]

Ç Dual space ςt1 m2 vs, Primal Space ςt2 m

Ç Where m is # of examples, t1, t2 are the sizes of the (Dual,
Primal) feature spaces, respectively.

Ç Typically, t1 << t2, so it boils down to the number of
examples one needs to considerrelative to the growth in
dimensionality.

Rule of thumb: a lot of examples Ą use Primal space

Most applications today: People use explicitkernels. That is,
they blow up the feature space explicitly.

89

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Kernels: Generalization

Do we want to use the most expressive kernels we
can?
Ç (e.g., when you want to add quadratic terms, do you really

want to add all of them?)

No; this is equivalent to working in a larger feature
space, and will lead to overfitting.

Here is a simple argument that shows that simply
adding irrelevant features does not help.

90

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт 91

Kernels: Generalization(2)

Given: A linearly separable set of points S={x1ΣΧxn} 2 Rn with
separator w 2 Rn

Embed S into a higher dimensional space ƴΩҔƴ, by adding
zero-mean random noise e to the additional dimensions.

Then ǿΩ ¢ȄΩҐ όǿΣлύ ¢(x,e) = w ¢x

SoǿΩ 2 RnΩstill separates S.

We will now look at ° /||x|| which we have shown to be
inversely proportional to generalization (and mistake bound).

gό{Σ ǿΩύκμμȄΩμμ Ґ minS ǿΩ
TȄΩ κ μμǿΩμμ μμȄΩμμ Ґ

minSwTȄ κμμǿμμ μμȄΩμμ ғ gό{Σ ǿΩύκμμx||

Since μμȄΩμμ Ґ μμόx,e)|| > ||x||

The new ratio is smaller, which implies generalizationsuffers.

Intuition: adding a lot of noisy/irrelevant features cannot help

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт 92

Conclusion- Kernels
The use of Kernels to learn in the dual space is an important idea
Ç Different kernels may expand/restrict the hypothesis space in useful ways.

Ç Need to know the benefits and hazards

To justify these methods we must embed in a space much larger
than the training set size.
Ç Can affect generalization

Expressive structures in the input data could give rise to specific
kernels, designed to exploit these structures.
Ç E.g., people have developed kernels over parse trees: corresponds to

features that are sub-trees.

Ç It is always possible to trade these with explicitly generated features, but
ƛǘ ƳƛƎƘǘ ƘŜƭǇ ƻƴŜΩǎ ǘƘƛƴƪƛƴƎ ŀōƻǳǘ ŀǇǇǊƻǇǊƛŀǘŜ ŦŜŀǘǳǊŜǎΦ

Collins-kernels.pdf

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Functions Can be Made Linear

Data are not linearly separable in one dimension

Not separable if you insist on using a specific class of
functions

x

93

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Blown Up Feature Space

Data are separable in <x, x2> space

x

x2

94

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Multi-Layer Neural Network

Multi-layer network were designed to overcome the
computational (expressivity) limitation of a single
threshold element.

The idea is to stack several

layers of threshold elements,

each layer using the output of

the previous layer as input.

Multi-layer networks can represent arbitrary
functions, but building effective learning methods
for such network was [thought to be] difficult.

95

activation

Input

Hidden

Output

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Basic Units

Linear Unit: Multiple layers of linear functions
oj = w ¢x produce linear functions. We want to
represent nonlinear functions.

Need to do it in a way that

facilitates learning

Threshold units: oj = sgn(w ¢x)

are not differentiable, hence

unsuitable for gradient descent.

The key idea was to notice that the discontinuity of
the threshold element can be represents by a smooth
non-linear approximation: oj = [1+ exp{-w ¢x}]-1
(Rumelhart, Hinton, Williiam, 1986), (Linnainmaa, 1970) , see: http://people.idsia.ch/~juergen/who-
invented-backpropagation.html)

96

activation

Input

Hidden

Output

w2
ij

w1
ij

http://people.idsia.ch/~juergen/who-invented-backpropagation.html

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Model Neuron (Logistic)

Us a non-linear, differentiable output function such
as the sigmoid or logistic function

Net input to a unit is defined as:

Output of a unit is defined as:

97

iijj xwnet ä ¶=

)T(netj
jje1

1
O

--
+

=

jT

1

2

6

3

4

5

7

67w

17w

ä
T

jO

1x

7x

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Learning with a Multi-Layer
Perceptron

LǘΩǎ Ŝŀǎȅ ǘƻ ƭŜŀǊƴ ǘƘŜ ǘƻǇ ƭŀȅŜǊ ςƛǘΩǎ Ƨǳǎǘ ŀ ƭƛƴŜŀǊ ǳƴƛǘΦ

Given feedback (truth) at the top layer, and the activation at the
layer below it, you can use the Perceptron update rule (more
generally, gradient descent) to updated these weights.

The problem is what to do with

the other set of weights ςwe do

not get feedback in the

intermediate layer(s).

98

activation

Input

Hidden

Output

w2
ij

w1
ij

ONLINE LEARNING CS446 -{ǇǊƛƴƎ Ψмт

Learning with a Multi-Layer
Perceptron

The problem is what to do with

the other set of weights ςwe do

not get feedback in the

intermediate layer(s).

Solution:If all the activation

functions are differentiable, then

the output of the network is also

a differentiable function of the input and weights in the network.

Define an error function (multiple options) that is a differentiable function
of the output, that this error function is also a differentiable function of the
weights.

We can then evaluate the derivatives of the error with respect to the
weights, and use these derivatives to find weight values that minimize this
error function. This can be done, for example, using gradient descent .

This results in an algorithm called back-propagation.

99

activation

Input

Hidden

Output

w2
ij

w1
ij

