Canmistakes
be bounded
in the non
finite case?

Can this
bound be
achieved?

There is a hiddenonjunctiongthe learner is to learn
f =X, @x, DX, DX DX,
The numt I__ast time:

Learning Protocols

|0g(|C|) — - Exact (vs. in exact) Learning

On Line Learning

The elimir # ofexampleseeded to learn liStakes

# of mistakesneeded to learn

¢ Learn frc - Developed ideas on what might be & gctive literals
possible (finite hypothesis classes)

k-conjuncuons
¢ Assumehat only k<<n attributes occur in thaisjunction
Thenumber ofk-conjunctions 2*C(n,k)° 2*n*

¢ log(|C|) = klogn
¢ Can we learn efficiently with this number of mistakes ?

ONLINE LEARNING CS446{ LINAY 3 WwmT 1
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Assume that you want to learn conjunctions. Should your hypoth
space be the class of conjunctions?

¢ Theorem Given a sample on n attributes that is consisterth a conjunctive
concept, it is Nfhard to find apure conjunctivehypothesis that is both

consistent with thesampleand has the minimum number aeftributes.
c ®W5F@AR | I dzad aft S NIhductiveBRsAW &ariaguAtizbrifhiisiamddliang'sBearningC NI Y'S ¢ 2 NJ|

Sameholds forDisjunctions

Intuition: Reduction to minimum set cover problem.

¢ Givena collection of sets that cover X, define a set of examplethat
learning the bes{dis/conj)junctionimplies a minimal cover

Consequentlywe cannot learn the concept efficienthga
(dis/con)junction.

But, we will see that we can do that, if we are willinggarn the
concept as a Linear Threshold function

In a more expressive class, the search for a good hypothesis
sometimes becomes combinatorially easier.

ONLINE LEARNING CS446{ LINAY 3 WwmT 2



£ (x)= 1 If WA X1 W\ X2 +. . WhXn>=(
(X)_ O Otherwise

= Disjunctionsy= X1 Xs wXs z
y= Q(1+]l)& 1 We>= 1)

w Atleast m of ny = at least 2 ok{, Xz, Xs} z
Y= Q(1+]lﬁ +1 )%>:2)

&
O
<
&
>
<
\°>¢

m ExclusiveOR: Y= L Xov) kL X2) ®

= Norttrivial DNF Y= i1 Xo) v (X3L Xa) ®

ONLINE LEARNING CS446{ LINAY 3 WwmT 3



wex=0 -

ONLINE LEARNING CS446{ LINAY 3 WwmT 2



m On previous slide, Perceptron has no threshold
wm.dzi 6S R2YyQU f2aS 3ISYSNI f)

ONLINE LEARNING CS446{ LINAY 3 WwmT S



» Online, mistake driven algorithm.

» Rosenblat{1959) suggestethat when a target
output value igrovidedfor a single neuron with
fixed input, it canncrementallychange weights and
learn to produce theutput using thePerceptron

learningrule
$ m (Perceptron== Linear Thresholdnit)

ONLINE LEARNING CS446{ LINAY 3 WwmT 6



Mistake driven

algorithms

Analysis via
mistake bound

Can mistakes
be bounded in
the noninite
case?

Can we
" achieve good
bounds?

» We learn f:X {-1,+1} representedas f=sgr{wix)
» WhereX={0,1P or >R andw R
» Given Labeled example&x, v1), (%, y,0 2xX% ¢.)}

1. Initialize w=0 R"
2. Cycle through all examples
a. Predict the label of instance x to ®8eQsgr{w{x)
b. Ife . § updatethe weight vector:
w=w+ryXx (r-aconstant, learning rate)
hiKSNBAASSE AT eQreées ff

ONLINE LEARNING CS446{ LINAY 3 WwmT 7



next item to be ®
classified °

[ X (withy = +1)

wx =0
Current
decision

boundary
i0}5 w
Current weight
vector
T T0.5 o0 05 1

(Figures from Bishop 2006)

ONLINE LEARNING

X as a vector

1
[ ]
[ ]
(]
0.5¢ wx=0
New
| decision
boundary
[ ]
10} ol
Newweight
X as a vector addeﬂo -
" ] | e
0 0.5 1 T0.5 0.5 1
« Positive
* Negative

CS446{ LINAY 3 WwmT
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wx=0

New
X (with y = +1) decision
next item to be boundary
1 classified ! I ' .
X as a vector
[ ] [ )
_ o \® o ©
wx =0 { o5t D5}
Current o
decision
boundary ol 0
[ ] [ ]
. X as a vector added to
T0f5 Current weight | {1 o - 0} 5 U
vector
[ ] [ ] [ ]
] . \ T * . ]
i1 i0.5 0 0.5 171 i0.5 0 0.5 171 0.5 1
Newweight
vector
« Positive
(Figures from Bishop 2006) * Negative

ONLINE LEARNING CS446{ LINAY 3 WwmT 10




w If xisBooleanonlyweightsof activefeatures éwlvﬂazgvv'[; 215
are updated W, 6= a6t 6
» Whyisthisimportant? - 12 e G L0
1. Initialize w=0 R’
2. Cycle through all examples
a. Predict the label of instance x to BeQsgrfwix)
d b. Ife . Q updatethe weight vector to
w=w+ryx (r-aconstant, learning rate)
— . hiKSNBAaS: AT eqQrez tB
- . . 1
w X >0is equivalent to >1/2

1+exp{-(w 1x)}

ONLINE LEARNING CS446{ LINAY 3 WwmT 11



ho@A2dzat é& OF y Qieprdséit(?R3) 4 K
¢ Only linearly separable functions

Minskyand Papert(1969)wrote an influential book
RSYzyauNJ GAY3 t SNOSLII NRY
limitations

ctlENRGE FdzyOirzya OFyQid 068 f

¢ Invision, if patterns are represented with local features,
Ol }/Qu NELINSaSyld &aevyysi NES O

Research on Neural Networks stopped for years

Rosenblatt himself (1959) asked,

o G2 KL
| u 2

orr—

J 03GSNY NB
SO2YS Ay

U)>O<

Ay A
NI e

Q) >+

N
<:‘<,
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(X1L X2) v (X3L X4) YiL Y2
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PerceptronConvergence Theorem:

If there exist a set of weights that are consistent with
the data (i.e, the data is linearly separab)e¢he
perceptronlearning algorithnwill converge

¢ Howlong would it take to converge

m PerceptronCycling Theorem:

& » If the training data is nolinearly separable the
& perceptron learning algorithm will eventually repeat
N -
N the same set of weights and therefore enter an

Infinite loop.
¢ Howto provide robustness, more expressivity ?

ONLINE LEARNING CS446{ LINAY 3 WwmT 14



Input set of examples and their labels Z = ((x1.41),.... (Tm,ym)) € (R™ X
{_1’1})m’ ur eIm't

e Initialize w«— 0 and € «— O7,;
e for every training epoch:
o for every z; € X':

— g « sign((w,z;) — )
— if (§ #y;)
* W« W 4+ NY,;x;

2] 2] g Just to make sure we understand
* = O+ NY;OIni that we learn both w anglt

ONLINE LEARNING CS446{ LINAY 3 WwmT 15



& WwEO.

this example sequence
(see additional notes)

Maintains a weight vectowl RN, w,=0 n = XZ n 0 @
Upon receiving an examplel R\
= Predicts according to the linear threshold function

m Theorem[Novikoff,1963]Let(x;; y,0 & X%.2V.Y, be@
sequence of labeled examples with <N, | x| Rahd

| {-1,1} for alliLetul <N, g> 0 be such that,

|| ul| =1 and y. uwx ? gfor alli.

Complexity Parameter

Then Perceptron makes most R/ g2 mistakes on

ONLINE LEARNING CS446{ LINAY 3 WwmT 16



Proof: Let v, be the hypothesis before the k-th mistake. Assume

that the k-th mistake occurs on the input example ( Xi, Vi)
. " YUk - 7;) < 0.
Assumptions 1. Note that the bound does not
depend on thedimensionality
v;=0 O = Tt 4 i nor on thenumber of examples
Ilul|= _ k"‘i B _‘f _‘y' ' o 2. Note that we placaveight vectors
Upy1 U = U - U4+ y; (U - 2;) andexamplesn the same space.
Y. u A 2xg L
! = U U+
. U;:;.l U > k’jr’
losal[* = [[9kl1* + 2y3(oi - &) + |31
< lloll* + R?
©lvetal? < kR?
Therefore,

VER> |loil| 2 0 @2 kY. sl k< R2/ g?
The second inequality follows because ||| < 1.

ONLINE LEARNING CS446{ LINAY 3 WwmT 17



m In the case of noiseparable datathe extent to whicha data
point fails to havanargin® via thehyperplanew can be
guantified by a slack variable

»=max(0; by, wex).

m  Observethat when» = 0 the examplex, has margin at least.
Otherwise, it grows linearly withy, wéx;

@ = Denote:D, = [a {»?}]*? 4
é’? m Theorem:Theperceptron is
:.,@Q guaranteedo make no morehan
e°° @ ((R+D)/°)? mistakeson any sequende
& of examplessatisfying [|x|| <R
m Perceptronis expectedo

have someobustness to noise =

ONLINE LEARNING CS446{ LINAY I WwmT 18



Howmany mistakes will the Perceptron algorithms
makewhenlearning ak-disjunction?

m Tryto figure out the bound

» Finda sequence of examples that will cause
Perceptron tomakeO(n)mistakes ork-disjunction on
n attributes.

& » (Where isn coming from?)

ONLINE LEARNING CS446{ LINAY 3 WwmT 19



Initialize:g=n; w, =1

Prediction is 1 iff w{x2qg

If no mistake:do nothing

If f(x)=1 but wfx<g, w,« 2w, (if x, =1) (promotion)
If f(x)=0 but wix2g¢qg, w,« w/2 (if x,=1)(demotion)

» TheWinnow Algorithm learns Linear Threshold
Functions.

S

S
S

m Forthe class oflisjunctions:
¢ Insteadof demotionwe can useslimination

ONLINE LEARNING CS446{ LINAY 3 WwmT 20



f=x U X, leozsl:J Xi024

Inttialize : g=1024w=(11,...

<(1,1,...2,+> wix2gqg
<(0,0,...,0);> wix<g
<(0,0111,,,0),- > wiix<g
<(10,0,...0,+> wix<g
<(10110..0),+> wix<g
<(1,010,0..1),+> wix<g

<(@010..1),+> wix? g

<(0,01,0.111.0),- > wfx2 g w=(51210,.0,...256 mistake (eliminatbnversion

w = (102410240,0,01,32,...10241024 (finalhypothesi}

1) Notice that the
w=(11...0) ok same algorithm will
w=(11....1) ok learn a conjunction

over these variables

w=({1L....1 ok G6T OHPCIHDP
w=(21....0 mistake | x 4 PCIHpPCDO
w=(4122...1) mistake
w=(814,2...2) mistake
log(n/2) (for eachgood variable)

w=(5121,256256,.... 256)

w=(5121256256....256) ok

ONLINE LEARNING
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» Claim Winnow makes O(k log n) mistakes en k
disjunctions

Initialize :qg =n; w, =1
Prediction is 1 iff

If no mistake : do nothing
If fx) =1 but wix<gqg ,
If f(x) =0 but w fx2gqg ,

wx?2 qg

w, « 2w, (if x, =1) (promotion)
w, « w.,/2 (if x, =1)(demotion)

= U -# of mistakes on positive examples (promotions)
u_V-# of mistakes on negative examples (demotjons

1. u<klog(2n)

positives.

ONLINE LEARNING

Aweight that corresponds to a good variable is gmgmoted.
Whenthese weights get to there willbe nomore mistakes on

CS446{ LINAY I WwMmT
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» Claim Winnow makes O(k log n) mistakes en k
disjunctions

Initialize :qg =n; w, =1

Prediction is 1 iff w {x 2 qg

If no mistake :do nothing

If f(x) =1 but wix<g , w,« 2w, (if x, =1) (promotion)
If f(x) =0 but wix2¢qg , w,« w./2 (if x, =1)(demotion)
m u-# of mistakes on positive examples (promotions)

u_V-# of mistakes on negative examples (demotjons
é\(o
S 2.v<2(u+1
Total weight TW=n initially
Mistake on positive: TW(t+1) < TW(t) + n
Mistake on negative: TW(t+1) < TW1)/2
O<TW<n+udivn/2Y v<2(u+l)

ONLINE LEARNING CS446{ LINAY 3 WwmT 23



» Claim Winnow makes O(k log n) mistakes en k
disjunctions

Initialize :qg =n; w, =1
Prediction is 1 iff w {x 2 qg

If no mistake :do nothing
If f(x) =1 but wix<g , w,« 2w, (if x, =1) (promotion)
If f(x) =0 but wix2¢qg , w,« w./2 (if x, =1)(demotion)

= U -# of mistakes on positive examples (promotions)
u_V-# of mistakes on negative examples (demotjons

S
&

&
# of mistakes: u+v<3u+2=0(klogn)

ONLINE LEARNING CS446{ LINAY 3 WwmT 24



Examplesx2 {0,1); orx2 R (indexed by k) Hypothesis: v2 R
Prediction y2{-1,+1}: Predict: y = 1iff w¢x >
Update: Mistake Driven

Additiveweight updatealgorithm:w A w +ry, X,
¢ (Perceptron, Rosenblatt, 1958. Variations gxist
¢ In the case of Boolean features:

Class =1 but wfx¢qg , w,« w, +1 (if x, =1) (promotion)
Class =0 but wfx2¢g , w,« w, -1 (if x;, =1)(demotion)

Multiplicative weightupdate algorithmw. A w; exply, x}
(Winnow Littlestone 1988. Variations exjst
¢ Boolean features:

Class=1 but wfx¢qg , w, « 2w, (if x, =1) (promotion)
Class =0 but wix2¢qg , w,« w./2 (if x; =1)(demotion)

ONLINE LEARNING CS446{ LINAY 3 WwmT 25
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m Someare necessary for them to performell

m Some are for ease of use and tuning

probability
P(y = +1 |X) = [1exp(-AwX)]?
¢ Can tune the parameter A
m Multiclassclassification (later)

m Key efficiency issudnfinite attribute domain

ONLINE LEARNING CS446{ LINAY I WwmT

m There are many extensions that can be made to these basic
algorithms.

¢ Regularization (next; will be motivated in the next section, COLT)

¢ Converting the output of a Perceptron/Winnow to a conditional

26



m  AnAveraged PerceptroAlgorithm is motivatedy the following
considerations

¢ EveryMistakeBound Algorithm can be convertefficiently toa PAC
algorithmc¢ to yieldglobal guaranteeen performance.

¢ Inthe mistake bounanodel:
A WeR2y QiU 1y26 o6KSymstakes. 6Aff YIS GKS
¢ Inthe PAGnodel:

A Dependence is onumber of examples seeandnot numberof mistakes
A Whichhypothesiswill you choosX K K
A Being consistent with more examples is better

@b $ m Toconvert a given Mistake Bound algorithimo a global guarantee algorithm):

Q@%zq’é ¢ Waitfor a long stretch w/o mistakes (there must be one)
v"q‘bé' ¢ Usethe hypothesis at the end of this stretch.

¢ ItsPAC behavior is relative to the length of the stretch.

m AveragedPerceptronreturns a weighted average of a number o

earlierhypothesesthe weights are a function of the length ofn
mistakes stretch.

ONLINE LEARNING CS446{ LINAY 3 WwmT 28
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Q
g n
u

w Training:
[m: #(examples)k: #(mistakes) = #(hypotheses); consistency count foy, |

Input: a labeled training set {{xy,0 2xX, 9.}
Number of epochs T
Output: a list of weightedperceptronsi(v,, c,0 = %, B)$
Initialize: k=0; y=0,¢=0
Repeat T times:
c Fori=m Z XYY
c/ 2YLziS LINBR%x)A2Yy &Q I aArdysd
cLT &Q ¢=cgl 0KSY
else:y, =V, +ty. X; G ,=1; k=k+1
Prediction:
Given:alist of weightedperceptrons{(v,, 0 Zvx @)} ;a new example x
Predicithe label(x) as follows:

y(X)= sign@, , G sign(y¢x) ]

ONLINE LEARNING CS446{ LINAY 3 WwmT 29



m Thick Separator (aka as Perceptron with Margin)
(Applies both for Perge&tg)(()gqand Winnow)

m Promote If:
C WX-Qq<g
m Demote If:

C WXx-q>g wex=0

Note: gis a functional margin. Its effect could disappear as w grows.
Nevertheless, this has been shown to be a very effective algorithmic addi

tiC

(Grove & Roth 98,0Karovet. al 97)

ONLINE LEARNING CS446{ LINAY 3 WwmT 30



» Threshold relative updati essive Perceptron)
W« W+rX

r:(7-w‘ﬂx

i

Equivalento updating
onthe same example

>
N0 multiple times

ONLINE LEARNING CS446{ LINAY 3 WwmT 31
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¢
¢

m Severabf these extensions (and a couple moaeg
iImplementedin the SNoWearning architecture that supports
several linear update rules (Winnow, Perceptron, naive Bayes)

m  Supports

Regularization(averaged Winnow/Perceptrdimick Separator)
Conversion to probabilities

Automatic parameter tuning

Truemulti-class classification

FeatureExtraction and Pruning

Variablesizeexamples

Goodsupport for large scale domains in terms of number of examples and
number of features

Very efficient
Many other options

m [Download fromhttp:// cogcomp.cs.illinois.edu/page/softwatke

ONLINE LEARNING CS446{ LINAY 3 WwmT 32
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&
N

é" UpdateRule :
,@

(5\'

m Thisalgorithm learns monotone functions

»m Forthe general case:

¢ Duplicate variableédown side?)
¢ Forthe negation of variable X, introduce a new variable y.

¢ Learnmonotone functions over 2n variables

» Balancedrersion
¢ Keep two weights for each variable; effective weight is the
difference

fF0)=1 but (W -w)TIxEq, W « 2w W « %w wherex =1 (promotion)

If f(x)=0but (W -w)fx2qg, W « %wi* W « 2w wherex. =1(demotion)

c2SQft O02YS olFO1 02 GKA&a ARS
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= Winnowis robust in the presence of various kinds of
noise.

¢ (classificatiomoise, attribute noisg

= Moving Target:
¢ Thetarget function changes with time

= Importance:

& ¢ sometimeswe learn under somdistribution buttest under
((;,\0 a slightly different one(e.g., natural language applicatigns
%.{s"’ ¢ The algorithm we develop provides a good insight into

Issues ofAdaptation

ONLINE LEARNING CS446{ LINAY 3 WwmT 34



&
N

N
<@

(5\'

» Modeling:

c | R @S Niuh:mayehange the target concepy adding
or removingsome variable from the target disjunction.
A Costof each addition move is.

c [ S NioS:makes prediction on the examples given, and

IS thentold the correct answer (according to current target
function)

Winnow-RY {FYS | a 2Ayy2¢63> 2yt e
below1/2

Claim WinnowR makes O(c log n) mistakes; ¢ost of
adversary (generalization of previous claim)

ONLINE LEARNING CS446{ LINAY 3 WwmT 35



Good project:

Push weights
to 0 (simple
hypothesis, L1
regularization
(Lasso)) vs.
bounding them
away from zero

¢ impact on
adaptation
m u-# of mistakes on positive examples (promotions)
& m V- # of mistakes on negative examples (demotjons
—
& 2.v<2(u+1
&
« Total weight TW=n initially
Mistake on positive: TW(t+1) < TW(t) + n
Mistake on negative: TW(t+1) < TWH)/4 <

O<TW<n+udivn/dY v <4(u+)
ONLINE LEARNING CS446{ LINAY 3 WYwmT 36



TODAY:-
A Administration: HW, Projects
A Flipped Class

A Continuing with OfLine Learning

ONLINE LEARNING CS446{ LINAY I WwmT
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http://l2r.cs.illinois.edu/~danr/Teaching/CS446-17/Hw/HW-hw2/hw2.pdf
http://l2r.cs.illinois.edu/~danr/Teaching/CS446-17/Hw/HW-hw3/hw3.pdf

Decision Trees, Expressivity of Models, Features

Key Reporting Module (RM): StoppingCriterion leftambiguous

¢ Train a model on a given Training Setdeliberately. Multipleoptions;

¢ Report 5fold cross validation think and make a decision (e.qg.,
¢ Report results on a suppli based on loss; based on eryor

(a) Convert Data to F

¢ 2000*270a Features; feature types; instance
(b) Program SGD; run RM space transformation.

(c) UséWNekato Learn DT using ID2; r
(d) UseWekato learn DT(de DT(depth=8); run RM

(e) UséWekato ge 100 different DT(d=4)
¢ Generate 100 dimensional data, each dimension is the prediction of a DT
¢ Run (b) on the new data

Compare algorithms frorp,c,d,e

Representation (given; can be augmented)

ONLINE LEARNING CS446{ LINAY 3 WwmT 38



Projectsproposals are due oMarch 10 2017

Within a week we will give you an approval to continue with your project
along with comments and/or a request to modify/augment/do a different
project There will also be a mechanism for peer comments.

We encouragé¢eam projectsg a team can be up to 3 people

Pleasestart thinking and working on the projenbw.

Yourproposal idimited to 1-2 pages, but needs to includeferences
and, ideally, some of the ideas you have developed in the direction of t
project (maybe even some preliminary results).

Any project that has a significant Machine Learning component is good

Youcando experimental work theoretical work, a combination of both
or a critical survey of results in some specialized topic.

The workhasto include some readindeven if you do not do a survey, you
must read (at least) two related papers or book chapters and relate you
work to it.

Originality is not mandatory but is encouraged.
Try to make it interesting!
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Fake News Challengenttp://www.fakenewschallenge.org/

KDD Cup 2013:

¢ "Author-Paper Identification™: given an author and a small set of papers, we are asked
identify which papers are really written by the author.
A https://www.kaggle.com/c/kddcup-2013-author-paperidentification-challenge

c al! dzi K2 NJ giveiRadehof dogGBentyprofile the author: identification, gender,
YIEGAGS I y3dzZ 3Ss X
Caption Control: Is it gibberish? Spam? High quality text?
¢ Adapt an NLP program to a new domain

Workon making learned hypothesis (e.g., linear thresHaluctions, NN)
more comprehensible
¢ Explain the prediction

Developa (multi-modal) Peoplddentifier
CompareRegularization methods: e.g., Winnow vsRegularization
Large scale clustering of documents + name the cluster

Deep Networks: convert a state of the art NLP program to a deep
network, efficient, architecture.

Tryto provesomething

ONLINE LEARNING CS446{ LINAY 3 WwmT 40


https://urldefense.proofpoint.com/v2/url?u=http-3A__www.fakenewschallenge.org_&d=DwMFAg&c=8hUWFZcy2Z-Za5rBPlktOQ&r=4vDcLc57cD397QaRxR0yOZWu-Gg0KM96wcN0Jci1clw&m=9N8h2Wns4dC-DEEP0V-pObXSyU3Zl4uG51ahA1VuScE&s=LWaUdjsTWw0Y1xGXjw1TCh2YdQAXX-PgPe8hD0Yup7A&e=
https://www.kaggle.com/c/kdd-cup-2013-author-paper-identification-challenge

m The feasibility of Mistake Bounds

¢ Con A Why do I include Perceptron
¢ Halving in this bullet? o
¢ Perceptron |A2 KIdQa AyidSNB:

m Algorithms
¢ Perceptron
A + Analysis
¢ Winnow
A + Analysis (special case)
A The general case
m Algorithms could behave differently

¢ Averaged version of Perceptron/Winnow is as good as any
other linear learning algorithm, if not better.
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Given example&=(,y)}, ,from a distribution oveXy, we are
trying to learn a linear unctlon parameterized by a weight veato
sothat we minimize the expectedsk function

Jw) =& QW) ~=~ 1/ma, , Q, w)
In Stochastic Gradient Descent Algorithms we approximate this
minimization by incrementally updating the weight vector w as
follows:

Wi =W, G Iy G, Q@ Wy) =W, G T G
Whereg_t=g, Q&, w,) is the gradient with respect to at timet.

The difference between algorithms now amounts to choosing a
different loss functiorQ(z w)

ONLINE LEARNING CS446{ LINAY 3 WwmT 42



m Here, even

Hinge loss:

m Otherwise

we do not take thesignof the dotproduct into account in the loss.
Another common loss function is:

Q((X, y)w) =max(0, 1-y w ¢x)
m This leads to th@erceptronupdate rule:

Wi =W, G 1 6, Q@, Wy) =W, Q1 G,

LMS:Q((X, y)w) =172 (y ¢ W ¢X)
leads to the update rule (Also calledA R NRAdalDE:

Wig =Wy + 1 QW €X) %
though we make binary predictions basedign (w¢x)

E(z)

w EX

> -
-2 =1 0 1 2

m Ify;w; ¢x > 1 (No mistake, by a margin): No update

(Mistake, relative to margin wy,; =W, +rVy; X

ONLINE LEARNING

Think about the case whereis a
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Wi =W, G 1 6, Q@, Wy) =W, Q1 G,

(notice that this is a vector, each coordinate (feature) has its wy}jrandgt j)

So far, we used fixed learning ratesr,, but this can change.

AdaGracaaltersthe update to adapt based on historical informatior
so that frequently occurrinfeatures inthe gradients get small
Iearnlng rates and mfrequent features get hlgher ones.

¢f,<S ARSI A a FTINR Yo { TONBAYdzSiyipa®y 6T Sl ¢
u )/u)\zya G2 NI NB odzi Ay T2N)

0S
éT)\y I G LISNJ FSI (dzNBjéas:t S| Ny 2
rej = 1G>

whereG; =&,- ; &% the sum of squares of gradients at featyre
until timet.

Overall, the update rule fohdagrads:
Wipq =W - G I1(G )2

This algorithm is supposed to update weights faster than Percep
or LMS when needed.
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The more general formalism addsegularizationterm to the risk
function, and attempts to minimize:

. Jw) =, 1, Qg W) +, R (W) .
2 KSNBE w A& dzaSR (2 SyFT2NDS a4z

LMS caseQ((x, yyw) =(yc w ¢x)

¢ R(w) 94 w] %gives the optimization problem called Ridge Regression.
¢ R(w) q w] , gives a problem called the LASSO problem

Hinge Loss cas&)((X, y)w) =max(0, 1- y w ¢X)
¢ R(w) 94 w] 2, gives theproblemcalledSupport Vector Machines

Logistics Loss cas@((x,y),w) = log(1l+expfy wex})

¢ R(W =] w] 3 givesthe problem called.ogistics Regression

These are convex optimization problems and, in principle, the same gra
descent mechanism can be used ip all cases. X

2 S gAaft asSSsS tIFr0SNIgKe A0 YI{1Sa 3
OZ2YUNRE GaqaAYLIX AOAUEED
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m Focus: Two families algorithms (oneof the on
line representative)
¢ Additiveupdate algorithms: Perceptron
A SVM is a close relative of Perceptron

¢ Multiplicative update algorithms: Winnow
A Close relatives: Boosting, Max entropy/Logistic Regression
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m Generalization

¢ (sincethe representation is theame): How many examples
are neededo get to a given level of accuracy?

» Efficiency

¢ Howlong does it take to learn laypothesisand evaluate it
(per-example)?

mw20dzalySaarT I Rl LJOF G
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{T L R2yiirtolaygh drcry

» Definea set of features:
¢ featuresare relations that hold in the sentence

» Mapa sentence to its featurbased representation

& : o
o .§° ¢ Thefeature-based representation will ghv@meof the
& & information in the sentence
L&
o

m Use this as an example to your algorithm
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{T L R2yiirtolaygh drcry

m Definea set of features:
¢ featuresare propertiesthat hold in the sentence

| Conceptuallythere are two steps in coming up wigh
& feature-based representation

.Q * - - -
@’g,b&” ¢ Whatare the information sources available?
o n -
Q C‘\é A Sensors: words, order of words, properties (?) of words

¢ Whatfeatures to construct based on these?

Whyis this distinction needée?
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A

New discriminator in functionally simpler

X XX 5 UX X X5 UX XX y, Uy, Uy,
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» The number of potential featuresisry large

» The instance spacedgarse

m Decisions depend on a small sefeditures: the
function space isparse

QC&} m Want to learn from a number of examples that is
small relative to the dimensionality
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» Dominated by the sparseness of the function space
¢ Most features ardrrelevant

m # of examples required by multiplicatiaégorithms
dependsmostly on # of relevarfeatures

¢ (Generalization bundsdepend onthe target ||u|| )

m # of examples required by additiagoirithmsdepends
heavily on sparsenesd features space:

¢ Advantagdao additive. Generalization depend oput ||x||
A (KivinedWarmuth 95).
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m Generalization

The | norm: ||x|| = &;|x] The,Inorm: |[x} =(& {"[x;[?)?

1/p

Thel, norm: ||x} = (a 1“|xi|P) The || norm: [|x}] = maxi|xi|

¢ Multiplicative algorithms:
A Bounds depend ofju||, the separatindiyperplane i: example #)
A M, =2In n [Julf max||xD|}, 2/min(u ¢xM)2
A Do not care much about data; advantagih sparsetarget u

¢ Additive algorithms:
A Bounds depend ofjx|| (Kivinen/ Warmuth, ®5)
A M, = [|ub? max|xO|/min(u ¢x0)2
A Advantage with few active features per example
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M,, =2In n [Julf max||XV]||, 2/min(u ¢xM)2

M,, = [[ulf? max||XO]L2/min(u ¢x®)2

m Extreme Scenario Assume thai has exacthk active features,
and the othem-k are0. That is, onlk input features are relevant
to the prediction. Then:

Tk, =K 5l = k5 max||x]p, =nt? s max]||x}, , =1

W We getthatM,=kn, M, =2KInn
™ Therefore, if k<<n, Winnow behaves much better.

m Extreme Scenario Now assume thatlzl 6 m = and thX ®m 0
Instances are very sparse, the rows ofran unit matrix Then

B (b =02 Jlull, =n 5 max(ixlp, =1 ;max|lx} , =1

W We get thatM,=n; M, =2n*Inn
W Therefore,Perceptron has a better bound.
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100000

Q0000

S0000

70000

60000

50000

40000

30000

20000

10000

0

# of mistakes to convergence

Mistakes Ipounpls folr 10 pf 1OIO of n

- Function:At least 10 out of
- fixed 100 variables are active | perceptron,SVMs
- Dimensionality is n -

- Winnow -

100 200 300 400 500 600 700 300 200 1000

n: Total # of Variables (Dimensionality)
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» Dominated by the size of the feature space

» Most features are functions (e.g. conjunctions) of raw

attributes
X(X, X5, %5, X ) - C(€,(X), C,(X), C5(X)...c, (X)) n>X

= Additive algorithms allow the use of Kernels
¢ No need to explicitly generate complex features

fx)=a ¢ K(x.x)

= Could be more efficient since work is done in the
original feature space, but expressivity is a function
of the kernel expressivity.
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»m Data are notinearly separabléen one dimension
m Not separable if you insist on using a specific class of

functions
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m Data are separable in <¥>xspace
O o
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Original feature space

-2 -15 -1 -05 O 05 1 15 2
x1

f(x) = 1iff X2+ x,2 O 1
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w In order to deal with this, we

Introduce two new Concepts: | Transformed feature space
m Dual Representation

m  Kernel (& the kernel trick)

X2*x2

Transform datax =(x;, %) =>E 8(X,2, %?)
fEQQ I' Mo ABRF ™M EQ
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Examples : x| {0,1}"

; Hypothesis:wi R"

f(x) =Th, (@ _, WX, (X))

If Class=1 but wixc¢qg ,
If Class=0 but w{x2gqg,

w. « w,+1 (if X, =1) (promotion)
w. « w.-1 (if x, =1)(demotion)

m Letw be an initial weight vector for perceptron. Let (), (X,+), (%,-), (¢,-) be
examples and assume mistakes are madelor and x*.

» What is the resulting weight vector?

Note: We care about the dot

- 1 2 4
W =W X+ X -X product: f(x) = wtx =

- (é-l,m r®| yi XI) ¢x

= In general, the weight vector w can be writte =&, I®Y (X ¢X)

as a linear combination of examples:

W =a 1ml ®| Yi X
= Where® is thenumber of mistakesnade onx.
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f(X) =Th,(@ ,,, S(@)K(x,2))

» A method to run Perceptron on a very large feature set,
without incurring the cost of keeping a very large weight vector.

m Computing thedot product can balone in the original feature
space.

m Notice:this pertains only to efficiency: The classifier is identical
to the one you get by blowing up the feature space.

m  Generalization is still relative to the real dimensionality (or,

X related properties).

m Kernelswere popularized bysVMs, but many other algorithms
can make use of them (== run in the dual).

¢ Linear Kernels: no kernels; stay in the original space. A lot of applications
actually use linear kernels.
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Examples : x| {0,1}"; Hypothesis:wi R"
f(x) = Th, (& _, WX, (X))

If Class=1 but wfx¢qg , w. « w,+1(f x;, =1) (promotion)

If Class =0 but wfx2¢qg , w,« w, -1 (if x;, =1)(demotion)

m Letl be the sett t,,t; Xof monomials (conjunctions) over the
feature space X %X X..

m Then we can write a linear function over thisw feature space

f(x) =Th,(a@;, wit;(x))

Example: x,x,x,(11010) =1 x,x,(11010)=0 x,x,X,(11011) =1
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Examples: x| {0,1}"; Hypothesis:wl R"

f(x) =Th

(a - Wit (X))

If Class=1 but wixc¢qg ,
If Class=0 but w{x2gqg,

w. « w,+1 (if X, =1) (promotion)
w. « w.-1 (if x, =1)(demotion)

m Great Increase in expressivity

m Can run Perceptron (and

Winnow) but the convergence bound

may suffer exponential growth.

» Exponential number of monomials are true in each example.
m Also, will have to keep many weights.
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A

New discriminator in functionally simple

X XX 5 UX X X5 UX XX y, Uy, Uy,
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E

xamples: x| {0,1}"; Hypothesis:wI| R"
f(x)=Th, (@, wt (X))

If Class¥#1 but wfx¢qg , w. « w,+1(if x, =1) (promotion)
If Class #0 but wfx2¢qg , w,« w, -1 (if x;, =1)(demotion)
m Consider the value af used in the prediction.
,\;@" m Each previous mistake, on examplenakes an
é\é additive contribution of +/1 tow, iff t(z) = 1
*@

» The value ofv is determined by the number of
mistakes on whick() was satisfied.
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E

xamples: x| {0,1}"; Hypothesis:wI| R"

fx) =Th, (@, Wt (x))

If Class
If Class

¥1 but wix¢g , w,. « w, +1(if X, =1) (promotion)
FO but wix2g, w,« w, -1 (if X, =1)(demotion)

m Pcset of examples on which we Promoted
m D¢ set of examples on which we Demoted
m M=P[ D g

f(x)=Th,(a al(x)=

il |
| P,t: (z) 1 ziDt (2)=1]

) cp> D (-

= Thq(a il ea S(z); (2)t, (X)S
&im u
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» Pc set of examples on which we Promoted

» Dc set of examples on which we Demoted
=M=PLD & . O
f)=Th,(&,,é al- &alwM)=

&i P.ti(z)=1 zi Dt;(2)=1]
B .. €. a
— Thq(a il éa S(z); (2)t, (X)u
€&im u
» WhereS(z)=1if £ P and S(z) 4 if zI D. Reordering:

f(x) =Th,(a A M S(2)a t(2)t(x))

-I, I
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) =Th, (&, , Wit ()

» S(y)=1ifyP and S(y)& if yi D.
() =Th,(& ,, S@Aa t(2)t,(x))
= Amistake oncontributes the valud 4 all monomials

satisfied by The total contributiontofthe sum is equal
to the number of monomials that satisfy bath x and

» Defina dot product in tkspace

K(x,z) =a t;(2)t;(x)
= Weget the standard notation "'

) =Th,(& ,, S@K(x,2))
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fX) =Th,(@ ,, S(@)K(x,2))

» What does this representation give us?

K(x,2)=& t,(2)t (x)

.z

m We can view this Kernel as the distance betwgan
In the t-space.

» But, Kk, can be measured in the original space,
without explicitlywriting the trepresentation of x, z
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X;X3 (001) =x;%3 (011) =1
X, (001) =x,(011) =1; Xx5(001) =x3(01) =1

If any other viri(zoag?e: Aa|(c?plc]a)a:rsl in the monomial, Ke rn e IT” C k

AGQa SOlLtdzr A2y 2y EZ | oAff 0S RAFFSNBY (@

fx) =Th,(@ ,, S@K(X,2)) K(x,2)=& t, (@)t (x)
Consider the space of & monomials (allowing

both positive and negative literals). Then,
K(x,z) = § t(2)t(x)=252mex2

When is the number of features that have
the same value for both x and z
& We get:
\&*\ — same(X, z)
& 09 =Th, (&, S@)@*""")
N Example Taken=3;x=001),z=011), monomials of size 0,1,2,3
letk=sameX,2) T O2y a i NHzOG | tyd dzNI

(1) choosing to include one of these k literals with the right
polarity in the monomial, or (2) choosing to not include it at all.

Monomials with literals outside this set disappear.
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f(x) =Th,(Q ,, S(@)K(x,2)) Kx,2)=& t,(2)t(x)

i |
TakeX={x;, %, %3, X}
' = The space of & monomials; | | |= 81

Consider=(1100),=(1101)
Write downl(x), I[(z), the representation of X, z in the | space.

Compute I(x¥l(z).

Show that

Kk,2 =I(X)¢1(z) =4, t,(2) t;(x) =2same«.d = 8

Try to develop another kernel, e.g., where | is the spa
of all conjunctions of size 3 (exactly).
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f¥) =Th, (@ ,, S(@)K(x,2))

Kx,z)=a t;(2)t(x)
= Simply run Perceptron in an dime mode, but keep
track of the setV..

» Keeping the set/ allowsus tokeep track of>(2.

» Rather than remembering the weight vector
remember the set MP and Dg all those examples
on which we made mistakes

» DualRepresentation
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= Hws3is out. Questions

» Projects:
¢ Some of you are thinking about the Fake News Challenge.
¢ Hard, but interesting.

» Quizzes:
¢ Most of you are doing it.

C Scores are ~95%
gvdzééiszya )\)/FVU\C")I-('JS GKIFG @& 2d:
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http://l2r.cs.illinois.edu/~danr/Teaching/CS446-17/Hw/HW-hw3/hw3.pdf

Prediction with respect to a separating hyper planes (produced
Perceptron, SVM) can be computed as a functiodadfproducts
of feature based representation of examples.

We want to define a dot product in aighdimensional sp

Giventwo examplesx = (%, %= x,)Xandy <y;,¥,2 Yy, Xwe& want
to map them to ahigh dimensional spadexample quadratic]:

B OF (X %X XY= (1, X X 2%2% X5 Ex,5 X 3XB)

] I:(yl’yZZ Xni_ (1’ Xz X(nzylzz an ﬁLYZZ anlyn)
and compute the dot produc =F (X)'F (y) [takes time]
Instead in the original space, compute

m B =k(x ,y)=[1+ (%2 XX (V1,Yo2 YR

m TheoremA=B (Coefficientdo not reallymatter)
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215105005

x1

Kernel TrickYouwant to work with degree 2 polynomial feature&(x).
Then, your dot product will be in a space of dimensionaility+1)/2 The
kernel trick allows you to save and compute dot products iman
dimensional space.

Can we use any K(.,.)? o0 =Th_(& ., ,, S@)K(x,z))

¢ Afunction Kg,2 is a valid kernef it corresponds to an inner product in some
(perhapsinfinite dimensiongl feature space. K(x,z) = a (=)t 09
Takethe quad ratic kerne”((x’z) Q(Tz)Z We proved that K is a valid kernel by explicitl

showing that it corresponds to a dot product

Example: Direct construction (2 dimensional, for simplicit
KK,2 = (X 2+ % 2)* = %222 +2% 7 X, Z, + %2 2,2
= (42, sart{2} X, %o, %) (72, sart{2} z,z,, 2,?)
=©(X)'©(z) A A dot product in an expanded space.
It is not necessary to explicitly show the feature functfon

Generalcondition: construct thekernelmatrix k(% .z, OKS O1 UK
positivesemi definite.
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m TheGram maitriof a set ofn vectors S ={Xx.} Is
the nxn matrix Gwith G; =xx;
¢ The kernel matrix is the Gram matrix of 0 ~ (XYL .
C (size depends on the # of examples, not dimensionality)

m Direct option:
cLFT &2dz KbDSEeZ&SKE GBS (GKS DNI
easy to see that it will be positive senefinite)
» Indirect:

¢ If you have the Kernel, write down the Kernel matfjxand
show that it is a legitimate kernel, without an explicit
construction of. x)
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Definition

A function K : X X X — R is a positive definite kernel if for any n and

any set {xq,Xy,...,X,} CX, the matrix A = (a;; = K(x;,x;)) is positive
definite.

For any positive definite kernel, there exists a Hilb

a lifting map ® : X — 5 such that Called the Gram Matrix.
A is positive semidefinite #AZ >0

for all nonzeraz2 R

K(x,.)’) T (q)(x): (I)O/))ﬂ
In fact, no need to have an explicit representatiorApbnly that K satisfies:
Theorem (Mercer)

If K is continuous and symmetric, then

KGey) =D 2vix)vi(y)
0
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m Linear kernelk(x, z) =xz

m Polynomial kernel of degret: k(x, z) = &2)°
(onlydth-order interactions)

m Polynomial kernelip to degreed: k(x, z) = kz+ cf (c>0)
(all interactions of orded or lower)
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= You can construct new kerndl§® E)®rom
existing ones:

¢ Multiplying k(x, E)®y a constant:
1 (® E)&ckX, E)Q

C Multiplying K(X, E\)(by“a functiorf applied tox andE:Q
K@, E)ET(X)k(x, E)RE)Q

¢ Applying a polynomial (with nenegative coefficients) to
k(x, E)E .
ka@x, E)GEP(K(x, E)Q withPzO BZ andax)

¢ Exponentiatind(x, E)Q
k@, E)& expk(x, E)
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= You can construdt@x, E)@romk,(x, E)$k,(x, E)Dy:

¢ Addingk;(x, E)Sandk (X, E)Q
1 ® E)@Kk,(x, E)@ky(x, E)Q

¢ Multiplyingk, (X, E)Sandkz(x E)Q
1 (® E)@K,(x, E)R(X, X

m Also:

¢ L Fx)n RYand k., (z 1)@ valid kernel in®
k(x, xQok 0 x ZxQ.is@lso a valid kernel

c If Ais a symmetric positive serdefinite matrix,
k(x, xQBxAx(ls also a valiternel

» In all cases, it is easy to prove these directly by construction.
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mk(x,2)=expbOo B b T 0
¢ (Xb z¥: squared Euclidean distance betweeandz
c O ¥ afree parameter
cOSNE ayYlftft OY Y F ARSyuGuA(e
c very largec: KF unit matrix (all items are the same)

ck(x,2F ™M @ KBSk

015

¢ k(x,z0 Ofwhenx, zdissimilar £

0.05

i“'ﬁ
-’ﬂ#‘illx .
*{’?*Wl\:{-.

0
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k(x,z)expdp b 0 B¢ &t T 0

Is this a kernel?

m kX, 2 =expo KzPk H'

=expd &xo+zzb 2x2)/H 2

—exXpo K H ' expikz %) expbzZH

= f(x) expkz ?) f(2)
exp(xzx °) is a valid kernel:
xzis the linear kernel;
we can multiply kernels by constants (3
we can exponentiate kernels

Unlike the discrete kernels discussed earlier, here you cannot easily
explicitly blow up the feature space to get an identical representatio

O 0 0 B
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fX) =Th,(@ ,;, S(@)K(x,2))

= A method to run Perceptron on a very large feature set,
without incurring the cost of keeping a very large weight vectol

» Computingthe weight vector cate done in the original feature
space.

m Notice this pertains only te:fficiency:the classifier is identical
to the one you get by blowing up the feature space.

m Generalizations still relative to the real dimensionality (or,
related properties).

m Kernels were popularized [8VMs but apply to a range of
models, Perceptron, Gaussian Models, PCAs, efc.
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m There is dradeoff between the computational
efficiencywith which these kernels can be computed
and the generalization abilif the classifier.

m For example, using such kernels the Perceptron
algorithm can make an exponential number of

mistakes even when learning simple functions
OYKFNR2YZIw?2 (i RZBedDBIG&&®R 2>b Lt { Q

» In addition,computingwith kernelsdependsstrongly
on the number of examples It turns out that
sometimesworking in the blown up spaceis more
efficientthanusingkernels @/ dzyo e s w@ji K= L/ a [ ¢
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Is it always worthwhile to define kernels and work In
the dual space?

» Computationallyjcumby,Rott2003]
¢ Dual space t; m?vs, Primal Spacgt, m

¢ Wherem is # of exampled,, t, are the sizes of the (Dual,
Primal) feature spaces, respectively.

¢ Typicallyt, <<, so it boils down to theumber of
examplesone needs to consideelative to the growth in
dimensionality.

» Rule of thumb: a lot of examplés use Primal space

» Most applications today: People usgplicitkernels. That is,
they blow up the feature space explicitly.
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» Do we want to use the most expressive kernels we
can?

¢ (e.g., when you want to add quadratic terms, do you really
want to add all of them?)

= No; this is equivalent to working in a larger feature
space, and will lead to overfitting.

» Here is a simple argument that shows that simply
adding irrelevant features does not help.
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Given: A linearly separable set of poifts{x> X} 2 R"with
separatorw 2 R

EmbedS into a higher dimensional spageQ bhby adding
zeroomean random noise to the additional dimensions.

Theng QE QT  dx@= avix
Sog Q R'Qstill separatess

We will now look at/||x|| which we have shown to be
Inversely proportional to generalization (and mistake bound).
g6 { = SQUMingQEQ@uK MPsQpY pi
} MiNgW™E K U J & uugo | X E 9|0
Sincey Y E Quxe)|| B [Ixjh u 6
The new ratio is smaller, which implies generalizasofiers.

Intuition: adding a lot of noisy/irrelevant features cannot help
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» The use of Kernels to learn in the dual space is an important id
¢ Different kernels may expand/restrict the hypothesis space in useful way
¢ Need to know the benefits and hazards

m To justify these methods we must embed in a space much large
than the training set size.
¢ Can affect generalization

m Expressive structures in the input data could give rise to specifi
kernels, designed to exploit these structures.

¢ E.qg., peopldave developedkernels over parsgees corresponds to
features that are sultrees.

¢ lItis always possible to trade these with explicitly generated features, but
Al YAIKEG KSEL 2ySQa UKAY1Ay3d o2
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Collins-kernels.pdf

»m Data are notinearly separabléen one dimension
m Not separable if you insist on using a specific class of

functions
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m Data are separable in <¥>xspace
O o
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m Multi-layer network were designed to overcome the
computational (expressivity) limitation of a single

threshold element. —
activation
» The idea is to stack several
layers of threshold elements,
each layer using the output of
the previous layer as input.

Output

>

» Multi-layernetworks can represent arbitrary
functions,but buildingeffective learning methods
for such networkwvas [thought to be] difficult.
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LinearUnit: Multiple layers of linear functions
0, = wx producelinear functions.We want to

represent nonlineafunctions activation Output
= Needto doitin a way that I w2,
facilitates learning R
m Threshold units:o; =sgn(w ¢x) W,
are not differentiable, hence

Input

unsuitablefor gradientdescent.

m The key idea was to notice that the discontinuity of
the threshold element can be represents by a smooth
non-linear approximationo, = [1+exp{-w ¢x}[*

= (Rumelhart Hinton,Williiam, 1986), Linnainmaa1970) , seehttp://people.idsia.ch/~juergen/whe
inventedbackpropagation.htm)

ONLINE LEARNING CS446{ LINAY 3 WwmT 96



http://people.idsia.ch/~juergen/who-invented-backpropagation.html

» Us a noHinear, differentiable output function such
as the sigmoid or logistic function

OOk, wWDNPR

W67

» Netinput to a unit is defined as:net; =g w; 11X,
m Output of a unit is defined as:

O ' 1
i - (net. - T.
1+e (net- ;)
ONLINE LEARNING CS446{ LINAY 3 WYwmT o7




m LGQa Slae (2 chB8ROEY20zKE6 [ 2 LI {E
m Given feedback (truth) at the top layer, and the activation at the

layer below it, you can use the Perceptron update rule (more
generally, gradient descent) to updated these weights.

w The problem is what to do witt
the other set of weightg we dgj| activation S
not get feedback in the e
intermediate layer(s). Hidden
wh;
Input
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The problem is what to do with activation Output

the other set of weightg we do X

not get feedback in the W
intermediate layer(s). Hidden
Solution:If all the activation 1
functions are differentiable, then Wi

the output of the network is also Input
a differentiable function of the input and weights in the network.

Define anerror function(multiple options) that is a differentiable function
of the output, that this error function is also a differentiable function of tl
weights.

We can then evaluate the derivatives of the error with respect to the
weights, and use these derivatives to find weight values that minimize tl
error function. This can be done, for example, using gradient descent .

This results in an algorithm called bamopagation.
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